跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張瑋芝
研究生(外文):CHANG, WEI-CHIH
論文名稱:非均向性跨孔震波層析成像技術研究
論文名稱(外文):Anisotropic Crosshole Seismic Tomography
指導教授:張永孚
指導教授(外文):CHANG, YOUNG-FO
口試委員:張永孚董倫道石瑞銓
口試委員(外文):CHANG, YOUNG-FOTONG, LUN-TAOSHIH, RUEY-CHYUAN
口試日期:2018-04-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:地震研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:94
中文關鍵詞:跨孔震波層析成像非均向性代數重建法
外文關鍵詞:Crosshole Seismic TomographyAnisotropyAlgebraic Reconstruction Technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
震波勘探中的跨孔震波層析成像技術可用於重建兩孔之間地層的速度剖面,因此可以估計出兩孔之間的地質構造,如斷層、斷裂帶、低速帶等目標。而地層通常具有非均向性的速度特徵,為了求解非均向性地層的特性,跨孔震波層析成像通常將速度剖面中網格的特性,假定為具有垂直對稱軸或水平對稱軸的橫均向性介質,以評估其地層的非均向性。然而地層的速度非均向性並不總是VTI(或HTI),在地層中可以發現不同方位角交錯的裂縫。因此本研究乃採用速度剖面中網格的非均向性速度,可以隨方位角任意變化,來進行跨孔震波層析成像。
以代數重建技術進行跨孔震波層析成像的反演工作,考慮網格上的速度可以隨方位角任意變化,並且使用數值模擬和物理模擬來驗證此方法的正確性。數值模擬結果顯示,在波線覆蓋方位完整的情況下,只要層析成像的震波觀測到時的數量為待測參數的一半,就可以重建介質的非均向性速度。物理模擬結果顯示,因為折射波會在高速均向性介質中傳播並首先到達測站,所以難以檢測到低速非均向性介質。然而,在組成的物理模型中可以成功地檢測到高速非均向性介質和與周圍介質的聲學阻抗相差很小的非均向性介質。綜上所述,由於需要比均向性跨孔層析成像求解更多的待測參數,因此非均向性跨孔層析成像需要更密集的波線密度和波線覆蓋方位更加全面,才能更準確地估計介質的非均向性速度。

The crosshole seismic tomography used in seismic exploration can be applied to map a velocity section of strata between two holes. Therefore the targets, such as geologic structure, fault, fracture zones, low velocity zone, between two holes can be accurately estimated. The strata in the crustal usually possess anisotropic characteristics of velocity. For the crosshole seismic tomography to resolve the anisotropic strata, the anisotropic characteristics of the velocity of the grids in the velocity section are usually assumed as a transversely isotropic medium with a vertical symmetry axis(VTI)or horizontal symmetry axis(HTI), thus the anisotropies of the strata can be evaluated. However, the velocity anisotropy of strata is not always VTI(or HTI), and multiazimuth fractures can be found in strata. Thus, in this study, a non-restricted azimuthally dependent velocity of the grids in the velocity section is used for the crosshole seismic tomographing.
Algebraic reconstruction techniques for the crosshole seismic tomography incorporating with non-restricted azimuthally dependent velocity of the grids in the velocity section are developed. Numerical and physical models were used to test these techniques. Results of the numerical testing show that the anisotropic velocities of the media can be successfully reconstructed using the observed arrival times of seismic waves under a full coverage of ray in azimuth. The number of the observed arrival times for the tomographing is only half of the unsolved parameters. Physical modeling shows that a low velocity anisotropic medium will be difficult to detect due to that the refraction wave propagates through the high velocity isotropic medium and reaches the detector firstly. However a high velocity anisotropic medium and anisotropic medium with a small contrast of the acoustics impedance to the surrounded medium can be successfully detected in the physical modeling. In conclusion, since more unknown parameters needed be solved than those of the isotropic crosshole tomography, a more dense in the ray density and a full coverage of observations in azimuth for the anisotropic crosshole tomography are necessary to accurately estimate the anisotropy velocity of the medium.

中文摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 簡介 1
1.2 文獻回顧 2
1.3 研究動機與目的 4
第二章 地層的非均向性 6
第三章 非均向性層析成像方法 11
3.1 非均向性代數重建法 13
3.2 非均向性聯合疊代重建算法 13
3.3 方位角的離散化 14
第四章 數值模擬 15
4.1 波線數目 34
4.2 網格數目 43
4.3 方向數目 50
4.4 數值模擬結論 58
第五章 物理模擬 60
5.1 儀器介紹 60
5.2 物理模型與施測流程 65
5.3 實驗結果 75
5.4 物理模擬結論 86
第六章 討論 87
第七章 結論 89
參考文獻 91

曾柏諺(2005)。轉型剪力波在橫均向性介質之走時與轉型點位置研究。國立中正大學應用地球物理研究所碩士論文。
鍾佳龍(2006)。剪力波在橫均向性介質之走時與反射點位置研究。國立中正大學地震研究所碩士論文。
Ando, M., Ishikawa, Y., and Yamazaki, F. (1983). Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. Journal of Geophysical Research: Solid Earth (1978–2012), 88(B7), 5850-5864.
Carrion, P., Costa, J., Pinheiro, J. E. F., and Schoenberg, M. (1992). Cross‐borehole tomography in anisotropic media. GEOPHYSICS, 57(9), 1194-1198.
Chang, Y. F., and Chang, C. H. (2001). Laboratory results for the features of body‐wave propagation in a transversely isotropic media. GEOPHYSICS, 66(6), 1921-1924.
Chapman, C. H., and Pratt, R. G. (1992). Traveltime tomography in anisotropic media—I. Theory. Geophysical Journal International, 109(1), 1-19.
Crampin, S. (1987). Geological and industrial implications of extensive-dilatancy anisotropy. Nature, 328, 491.
Daley, P. F., and Hron, F. (1977). Reflection and transmission coefficients for transversely isotropic media. Bulletin of the Seismological Society of America, 67(3), 661-675.
Dines, K. A., and Lytle, R. J. (1979). Computerized geophysical tomography. Proceedings of the IEEE, 67(7), 1065-1073.
Enderle, U., Mechie, J., Sobolev, S., and Fuchs, K. (1996). Seismic anisotropy within the uppermost mantle of southern Germany. Geophysical Journal International, 125(3), 747-767.
Fehler, M., and Pearson, C. (1984). Cross‐hole seismic surveys: Applications for studying subsurface fracture systems at a hot dry rock geothermal site. GEOPHYSICS, 49(1), 37-45.
Hess, H. H. (1964). Seismic Anisotropy of the Uppermost Mantle under Oceans. Nature, 203, 629.
McCann, D. M., Baria, R., Jackson, P. D., and Green, A. S. P. (1986). Application of cross‐hole seismic measurements in site investigation surveys. GEOPHYSICS, 51(4), 914-929.
McMechan, G. A. (1983). Seismic tomography in boreholes. Geophysical Journal of the Royal Astronomical Society, 74(2), 601-612.
Peterson, J. E., Paulsson, B. N. P., and McEvilly, T. V. (1985). Applications of algebraic reconstruction techniques to crosshole seismic data. GEOPHYSICS, 50(10), 1566-1580.
Pratt, R. G., and Chapman, C. H. (1992). Traveltime tomography in anisotropic media—II. Application. Geophysical Journal International, 109(1), 20-37.
Pratt, R. G., McGaughey, W. J., and Chapman, C. H. (1993). Anisotropic velocity tomography: A case study in a near‐surface rock mass. GEOPHYSICS, 58(12), 1748-1763.
Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37(1), 65-106.
Schoenberg, M. A., Dean, S., and Sayers, C. M. (1999). Azimuth‐dependent tuning of seismic waves reflected from fractured reservoirs. GEOPHYSICS, 64(4), 1160-1171.
Silver, P. G., and Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth (1978–2012), 96(B10), 16429-16454.
Stewart, R. R. (1988). An algebraic reconstruction technique for weakly anisotropic velocity. GEOPHYSICS, 53(12), 1613-1615.
Stewart, R. R. (1991). Exploration Seismic Tomography.
Thomsen, L. (1986). Weak elastic anisotropy. GEOPHYSICS, 51(10), 1954-1966.
Vinnik, L. P., Makeyeva, L. I., Milev, A., and Usenko, A. Y. (1992). Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal International, 111(3), 433-447.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top