(3.235.25.169) 您好!臺灣時間:2021/04/20 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉日豪
研究生(外文):JIH-HAO YEH
論文名稱:微型癌細胞阻抗量測模組之研發
論文名稱(外文):Development on the Miniaturized Impedance Measurement Module for Cancerous cells
指導教授:任春平
指導教授(外文):Chun-Ping Jen
口試委員:林大偉李昆達
口試委員(外文):David. T.W. LinKun-Dar Li
口試日期:2018-06-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:循環腫瘤細胞介電泳導納阻抗DEPIM微型阻抗模組
外文關鍵詞:DEPIMlung cancerimpedance measuring systemplanar interdigitated microelectrodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
分析細胞數量與細胞型態提供了我們在早期判斷癌症的重要依據,並即時地監控療程進度。利用電性檢測的原理在近幾年成為非常熱門的技術。在文獻中透過阻抗量測來檢測癌細種類的技術已經備受關注。本文提出了一種利用介電泳阻抗量測(DEPIM)方法研究人肺細胞株的微流體晶片,圓形與直線形狀的指叉式微電極的微電極圖案是由微製程技術製作而成。分別將不同的細胞數樣本注射在次毫米體積的微腔室中,其中細胞不僅能透過介電泳增強其集中在微電極表面上的現象,更可從捕獲在微電極上的細胞測量出電阻抗特性,並更進一步地發現在每種細胞的導納值變化與細胞數之間存在著線性關係。藉由這種特性可以量測出人類癌細胞(A549)與正常細胞(MRC-5)之差異,進而達到癌細胞檢測之目的。
Cancer has become a worldwide disease, and increases rapidly in recent years. A precise treatment depends on the accuracy of the diagnostic technique, in which includes analysis of cell number and cellular morphology. This study presented the development on the microfluidic device utilizing the dielectrophoretic impedance measurement (DEPIM) method which explores the human lung cell lines. The microchip consists of interdigitated microelectrodes with the circle -on-line shape and a micro chamber in which both DEP concentrating and impedance sensing for cells inside. This micro device has been fabricated by standard microfabrication processes. A highly sensitivity impedance measurement circuit board was built for the chip. It provides the sinusoidal signals with the frequencies in a wide range, so that the experiments can be performed in a reliable excitation. The results show a linear relationship between the admittance variation and the cell number in the different cell lines. The significant difference in the slope of these characteristic lines were adopted to distinguish two different lung cells, including A549- human lung carcinoma cells and MRC-5- human normal lung epithelial cells. The device is a simple-to-operate with high sensitivity, rapid response, inexpensive and portable application for cancerous cells.
摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 12
1-1 前言 12
1-2 常見CTCs檢測方法 14
1-2-1 免疫磁分選 14
1-2-2 微流體細胞篩選 15
1-2-3 流式細胞儀 16
1-2-4 密度梯度離心法 17
1-3 文獻回顧 18
1-3-1 介電泳聚焦與應用 18
1-3-2 單細胞捕捉與組抗量測 23
1-3-3 多細胞捕捉與組抗量測 24
1-3-4 電路板阻抗量測 26
1-4 研究方向 29
第二章 基本理論 30
2-1 介電泳理論 30
2-2 細胞珍珠串現象 36
2-3 細胞電導量測之計算公式 37
2-4 等效電路模組之計算公式場對細胞傷害及其影響 40
2-5 電場對細胞傷害及其影響 42
第三章 研究方法 43
3-1 儀器設備與藥品 43
3-2 細胞培養 45
3-2-1 人肺腺癌細胞(A549)培養 45
3-2-2 人類肺細胞 (MRC-5)培養 47
3-3 細胞樣本配製 48
3-4 晶片設計 49
3-5 晶片製作 50
3-6 常規量測系統之設備架設 53
3-7 微型化阻抗量測電路板 54
3-8 實驗步驟 55
第四章 結果與討論 57
4-1 置入細胞樣本進行介電泳集中 57
4-2 R-Squared 定義 58
4-3 捕捉細胞後進行電訊號量測之結果 58
第五章 結論 62
參考文獻 63


[1]M. R.Hasan, N.Hassan, R.Khan, Y. T.Kim, andS. M.Iqbal, “Classification of cancer cells using computational analysis of dynamic morphology,” Comput. Methods Programs Biomed., vol. 156, pp. 105–112, 2018.
[2]C. H.Chuang, C. H.Wei, Y. M.Hsu, H. S.Huang, andF.BinHsiao, “Impedance sensing of bladder cancer cells based on a single-cell-based DEP microchip,” Proc. IEEE Sensors, pp. 943–947, 2009.
[3]S.Singh, A.Kaushal, S.Khare, andA.Kumar, “DNA chip based sensor for amperometric detection of infectious pathogens,” Int. J. Biol. Macromol., vol. 103, pp. 355–359, 2017.
[4]J. P.Lafleur, A.Jönsson, S.Senkbeil, andJ. P.Kutter, “Recent advances in lab-on-a-chip for biosensing applications,” Biosens. Bioelectron., vol. 76, pp. 213–233, 2016.
[5]H. J.Pandya et al., “Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements,” Sensors Actuators, B Chem., vol. 199, pp. 259–268, 2014.
[6]C.Church, J.Zhu, G.Wang, T. R. J.Tzeng, andX.Xuan, “Electrokinetic focusing and filtration of cells in a serpentine microchannel,” Biomicrofluidics, vol. 3, no. 4, pp. 1–10, 2009.
[7]C. P.Jen, C.TeHuang, andC. H.Weng, “Focusing of biological cells utilizing negative dielectrophoretic force generated by insulating structures,” Microelectron. Eng., vol. 87, no. 5–8, pp. 773–777, 2010.
[8]T.Anh-Nguyen et al., “Electrokinetic separation of polystyrene microspheres in conductive media on a microfluidic chip,” Sensors Actuators, B Chem., vol. 248, no. 5, pp. 1182–1188, 2015.
[9]R.Hamada, H.Takayama, Y.Shonishi, L.Mao, M.Nakano, andJ.Suehiro, “A rapid bacteria detection technique utilizing impedance measurement combined with positive and negative dielectrophoresis,” Sensors Actuators, B Chem., vol. 181, pp. 439–445, 2013.
[10]S. I.Han, H.Soo Kim, andA.Han, “In-droplet cell concentration using dielectrophoresis,” Biosens. Bioelectron., vol. 97, no. March, pp. 41–45, 2017.
[11]S. L.Tsai andM. H.Wang, “24 h observation of a single HeLa cell by impedance measurement and numerical modeling,” Sensors Actuators, B Chem., vol. 229, pp. 225–231, 2016.
[12]H.Park, D.Kim, andK. S.Yun, “Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection,” Sensors Actuators, B Chem., vol. 150, no. 1, pp. 167–173, 2010.
[13]F.Asphahani et al., “Real-time characterization of cytotoxicity using single-cell impedance monitoring,” Analyst, vol. 137, no. 13, pp. 3011–3019, 2012.
[14]T.Anh-Nguyen, B.Tiberius, U.Pliquett, andG. A.Urban, “An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis,” Sensors Actuators, A Phys., vol. 241, pp. 231–237, 2016.
[15]S. C.Bürgel, C.Escobedo, N.Haandbæk, andA.Hierlemann, “On-chip electroporation and impedance spectroscopy of single-cells,” Sensors Actuators, B Chem., vol. 210, pp. 82–90, 2015.
[16]A.ElHasni, C.Schmitz, K.Bui-Göbbels, P.Bräunig, W.Jahnen-Dechent, andU.Schnakenberg, “Electrical impedance spectroscopy of single cells in hydrodynamic traps,” Sensors Actuators, B Chem., vol. 248, pp. 419–429, 2017.
[17]Y.Chen et al., “CMOS high density electrical impedance biosensor array for tumor cell detection,” Sensors Actuators, B Chem., vol. 173, pp. 903–907, 2012.
[18]H. A.Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys., vol. 29, no. 8, pp. 1182–1188, 1958.
[19]R.Pethig, “Dielectric Properties of Cells,” in Dielectrophoresis, 2017, pp. 213–244.
[20]J. Y.Han et al., “Induction of IL-8 expression by Cordyceps militaris grown on germinated soybeans through lipid rafts formation and signaling pathways via ERK and JNK in A549 cells,” J. Ethnopharmacol., vol. 127, no. 1, pp. 55–61, 2010.
[21]S. I.Han, Y. D.Joo, andK. H.Han, “An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation,” Analyst, vol. 138, no. 5, pp. 1529–1537, 2013.
[22]F.Han et al., “Fast electrical lysis of cells for capillary electrophoresis,” Anal. Chem., vol. 75, no. 15, pp. 3688–3696, 2003.
[23]H. Y.Wang, A. K.Bhunia, andC.Lu, “A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage,” Biosens. Bioelectron., vol. 22, no. 5, pp. 582–588, 2006.
[24]G.Mernier, W.Hasenkamp, N.Piacentini, andP.Renaud, “Multiple-frequency impedance measurements in continuous flow for automated evaluation of yeast cell lysis,” Sensors Actuators, B Chem., vol. 170, pp. 2–6, 2012.
[25]I.Giaever andC. R.Keese, “Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behavior in Tissue Culture,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 2, pp. 242–247, 1986.
[26]K. C.Lan andL. S.Jang, “Integration of single-cell trapping and impedance measurement utilizing microwell electrodes,” Biosens. Bioelectron., vol. 26, no. 5, pp. 2025–2031, 2011.
[27]A.Kulikovsky, “Why impedance of the gas diffusion layer in a PEM fuel cell differs from the Warburg finite-length impedance?,” Electrochem. commun., vol. 84, no. August, pp. 28–31, 2017.
[28]Y.Xu, X.Xie, Y.Duan, L.Wang, Z.Cheng, andJ.Cheng, “A review of impedance measurements of whole cells,” Biosens. Bioelectron., vol. 77, pp. 824–836, 2016.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔