跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張珉瑋
研究生(外文):CHANG, MIN-WEI
論文名稱:化學氣相沉積成長二維硒化鎵薄片與其光偵測應用
論文名稱(外文):Synthesis Of 2D GaSe Flakes For Photodetector Applications
指導教授:李元堯李元堯引用關係呂明諺
指導教授(外文):LI, YUAN-YAOLU, MING-YEN
口試委員:李元堯呂明諺王祥辰
口試委員(外文):LI, YUAN-YAOLU, MING-YENWang, Hsiang-Chen
口試日期:2017-10-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:化學氣相沉積硒化鎵場效電晶體光偵測器
外文關鍵詞:CVDGaSeFETPhotodetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究透過化學氣相沉積法成長二維硒化鎵薄片並開發光偵測器的應用。首先利用三區真空爐管藉由調整不同的溫度成長出銳利的正三角形硒化鎵薄片,拉曼光譜及X光電子能譜分析可以確認成長出來的材料為硒化鎵,另外從拉曼光譜分析中的A11g峰值強度的變化及A21g峰值的位移對不同層數的硒化鎵進行檢測,再利用原子力顯微鏡精確的測量不同層數的硒化鎵,量測結果與拉曼光譜分析結果互相對應,也證明我們能成功成長出單層硒化鎵結構。接著我們將成長的硒化鎵薄片進行黃光微影並鍍上Ti與Au製作成元件,透過450 oC 5分鐘熱退火改善材料與金屬的接觸,根據電性量測結果,硒化鎵元件呈現p-type半導體特性,載子遷移率為14.8 cm2V-1s-1,元件也可達104的開關比,進一步進行光電特性的探討,我們可以發現元件的電流會隨著白光強度增加而上升,並有穩定的的光響應特性,針對元件照射不同波段的光進行量測,元件對於短波長波段的光也有較好的感應度,在波長463 nm的藍光照射下,可以得到31.3 A/W的高光響應度及82.8 %的外部量子效率。
In this study, we have successfully grown the GaSe flakes by using chemical vapor deposition (CVD) method. Raman spectroscopy, XPS confirm the composition of 2D GaSe material, the peak intensity of A11g and the peak displacement of A21g in raman spectra can be used to determine the numbers of layer of GaSe. Then, we fabricated the GaSe field-effect transistors (FETs) by photolithography, I-V characteristics of GaSe devices showed that GaSe is a p-type semiconductor with the mobility about 14.8 cm2V-1s-1 and the on/off ratio of approximately 104. Afterward, we further probed the photodetection characteristics of devices, the current increased with the increasing power under white light irradiation. In addition, we investigated the photoresponses of devices under different wavelength light illumination, the results showed that GaSe devices have better sensitivity for short wavelength light illumination, the devices have highest responsivity of 31.3 A/W and external quantum efficiency (EQE) of about 82.8%under the 473 nm light illumination.
摘要 I
Abstract II
致謝 III
圖目錄 VII
表目錄 XI
第一章 緒論與文獻回顧 1
1-1二維材料 1
1-2二維材料的應用 2
1-2-1光感測器(Photodetector) 2
1-2-2化學氣體感測器(Chemical vapor sensor) 4
1-2-3 DNA感測器(DNA detector) 5
1-2-4濕度感測器(Humidity detector) 7
1-3 硒化鎵(GaSe) 8
1-3-1物理特性 8
1-4硒化鎵取得方法 10
1-4-1 機械剝離法(Mechanical exfoliation) 10
1-4-2 化學氣相沉積(Chemical vapor deposition, CVD) 12
1-4-3 分子束磊晶(Molecular beam epitaxy) 14
1-4-4 脈衝雷射沉積(Pulsed laser deposition, PLD) 16
1-4-5 硒化鎵獲得方法優缺點比較 17
1-5硒化鎵薄膜層數判別 18
1-5-1 光學顯微鏡分析 18
1-5-2 原子力顯微鏡(Atomic Force Microscope, AFM)分析 19
1-5-3 拉曼光譜分析 20
1-7研究動機 23
第二章 實驗步驟 24
2-1 實驗步驟 25
2-1-1 高溫爐管成長硒化鎵薄片 25
2-1-2 硒化鎵元件製備 27
2-2 儀器介紹 29
2-2-1 高溫三區真空爐管 29
2-2-2 拉曼光譜儀(Raman Spectroscopy) 30
2-2-3 光致發光(Photoluminescence, PL) 32
2-2-4 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 33
2-2-5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 34
2-2-6 原子力顯微鏡(Atomic Force Microscope, AFM) 36
2-2-7 X光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 38
2-2-8 快速熱退火系統(Rapid Thermal Annealing, RTA) 39
2-2-9 電子束蒸鍍系統(E-gun Evaporator) 40
2-2-10 電性量測系統(I-V measurement) 41
第三章 結果與討論 43
3-1 不同成長溫度對化學氣相沉積法成長硒化鎵薄片的影響 43
3-2原子力顯微鏡分析 45
3-3 拉曼光譜分析 47
3-4 X光電子能譜分析 49
3-5 硒化鎵元件特性分析 50
3-6 硒化鎵元件作為光偵測器應用 53
3-6-1 黃白光偵測器 53
3-6-2 不同波長之光偵測器 55
第四章 結論 61
第五章 未來展望 62
參考文獻 63


1Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183-191 (2007).
2Geim, A. K. & Grigorieva, I. V. Van der waals heterostructures. Nature 499, 419-425 (2013).
3Cao, Y., Cai, K., Hu, P. et al. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Sci Rep 5, 8130 (2015).
4Ko, P. J., Abderrahmane, A., Takamura, T. et al. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector. Nanotechnology 27, 325202 (2016).
5Xiong, X., Zhang, Q., Zhou, X. et al. One-step synthesis of p-type GaSe nanoribbons and their excellent performance in photodetectors and phototransistors. J. Mater. Chem. C 4, 7817-7823 (2016).
6Yang, S., Yue, Q., Cai, H. et al. Highly efficient gas molecule-tunable few-layer GaSe phototransistors. J. Mater. Chem. C 4, 248-253 (2016).
7Hu, P. A., Wen, Z. Z., Wang, L. F. et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6, 5988-5994 (2012).
8Huang, H., Wang, P., Gao, Y. et al. Highly sensitive phototransistor based on GaSe nanosheets. Appl. Phys. Lett. 107, 143112 (2015).
9Li, H., Yin, Z., He, Q. et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63-67 (2012).
10Late, D. J., Huang, Y. K., Liu, B. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879-4891 (2013).
11Perkins, F. K., Friedman, A. L., Cobas, E. et al. Chemical vapor sensing with monolayer MoS2. Nano Lett 13, 668-673 (2013).
12Sarkar, D., Liu, W., Xie, X. J. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992-4003 (2014).
13Rajan, A. C., Rezapour, M. R., Yun, J. et al. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition. ACS Nano 8, 1827-1833 (2014).
14Huang, Y., Shi, Y., Yang, H. Y. et al. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale 7, 2245-2249 (2015).
15Jin, K., Xie, L., Tian, Y. et al. Au-modified monolayer MoS2 sensor for DNA detection. J. Phys. Chem. C 120, 11204-11209 (2016).
16Zhang, S.-L., Jung, H., Huh, J.-S. et al. Efficient exfoliation of MoS2 with volatile solvents and their application for humidity sensor. J. Nanosci. Nanotechnol. 14, 8518-8522 (2014).
17Late, D. J. Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mat. 225, 494-503 (2016).
18Pawbake, A. S., Waykar, R. G., Late, D. J. et al. Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces 8, 3359-3365 (2016).
19Xu, K., Yin, L., Huang, Y. et al. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. Nanoscale 8, 16802-16818 (2016).
20Xu, M., Liang, T., Shi, M. et al. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766-3798 (2013).
21Huang, W., Gan, L., Li, H. et al. 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm 18, 3968-3984 (2016).
22Novoselov, K. S., Geim, A. K., Morozov, S. V. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
23Cai, H., Kang, J., Sahin, H. et al. Exciton pumping across type-I gallium chalcogenide heterojunctions. Nanotechnology 27, 065203 (2016).
24Late, D. J., Liu, B., Luo, J. et al. GaS and GaSe ultrathin layer transistors. Adv Mater 24, 3549-3554 (2012).
25Li, X., Lin, M. W., Puretzky, A. A. et al. Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. Sci Rep 4, 5497 (2014).
26Yuan, X., Tang, L., Liu, S. et al. Arrayed van der waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett 15, 3571-3577 (2015).
27Mahjouri-Samani, M., Gresback, R., Tian, M. et al. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv. Funct. Mater. 24, 6365-6371 (2014).
28Quan, L., Song, Y., Lin, Y. et al. The Raman enhancement effect on a thin GaSe flake and its thickness dependence. J. Mater. Chem. C 3, 11129-11134 (2015).
29Zhou, Y., Nie, Y., Liu, Y. et al. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 8, 1485-1490 (2014).
30Lei, S., Ge, L., Liu, Z. et al. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett 13, 2777-2781 (2013).
31Beechem, T. E., Kowalski, B. M., Brumbach, M. T. et al. Oxidation of ultrathin GaSe. Appl. Phys. Lett. 107, 173103 (2015).
32Bergeron, A., Ibrahim, J., Leonelli, R. et al. Oxidation dynamics of ultrathin GaSe probed through Raman spectroscopy. Appl. Phys. Lett. 110, 241901 (2017).
33Susoma, J., Lahtinen, J., Kim, M. et al. Crystal quality of two-dimensional gallium telluride and gallium selenide using Raman fingerprint. AIP Advances 7, 015014 (2017).
34林昆霖. 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡. 國家奈米元件實驗室奈米通訊 20, 34-38 (2013).
35Rumaner, L. E., Gray, J. L. & Ohuchi, F. S. Nucleation and growth of GaSe on GaAs by Van der Waal epitaxy. J. Cryst. Growth 177, 17-27 (1997).
36Li, X., Basile, L., Yoon, M. et al. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals. Angew Chem Int Ed Engl 54, 2712-2717 (2015).
37Lee, C., Yan, H., Brus, L. E. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695-2700 (2010).
38Late, D. J., Liu, B., Matte, H. S. S. R. et al. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater. 22, 1894-1905 (2012).
39Iwakuro, H., Tatsuyama, C. & Ichimura, S. XPS and AES studies on the oxidation of layered semiconductor GaSe. Jpn. J. Appl. Phys. 21, 94-99 (1982).
40Lang, O., Tomm, Y., Schlaf, R. et al. Single crystalline GaSe/WSe2 heterointerfaces grown by van der waals epitaxy. II. Junction characterization. J. Appl. Phys. 75, 7814-7820 (1994).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊