|
[1] Brian Bohunicky, Shaker A Mousa. “Biosensors: the new wave in cancer diagnosis” Nanotechnology, Science and Applications. (2010) [2] NCI. Biomarker. 2009. Available from: http://www.cancer.gov/dictionary/?searchTxt=biomarker. Accessed Sep 24 2010. [3] Gunawardana CG, Diamandis EP. High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett 2007;249:110–9. [4] Chen YT, Scanlan MJ, Sahin U, Tureci AO, Gure ST, Williamson B, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997;94:1914–8. [5] Jager D, Stockert E, Gure AO, Scanlan MJ, Karbach J, Jager E, et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res 2001;61:2055–61. [6] Parker S, Lim Y, Lee D, Cho B, Bang YJ, Sung S, et al. Identification and characterization of a novel cancer/testis antigen gene CAGE-1. Biochim Biophys Acta 2003;1625:173–82. [7] Basil CF, Zhao Y, Zavaglia K, et al. Common cancer biomarkers. Cancer Res. 2006;66(6):2953–2961. [8] Clinical practice guidelines for the use of tumor markers in breast and colorectal cancer. Adopted on 1996 May 17 by the American Society of Clinical Oncology. J Clin Oncol. 1996;14(10):2843–2877. [9] Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55–62. [10] Hu XC, Wang Y, Shi DR, Loo TY, Chow LW. Immunomagnetic tumor cell enrichment is promising in detecting circulating breast cancer cells. Oncology 2003;64:160–5. [11] Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol 2004;32:891–904. [12] Zieglschmid V, Hollmann C, Gutierrez B, Albert W, Strothoff D, Gross E, et al. Combination of immunomagnetic enrichment with multiplex RTPCR analysis for the detection of disseminated tumor cells. Anticancer Res 2005;25:1803–10. [13] Choesmel V, Pierga JY, Nos C, Vincent-Salomon A, Sigal-Zafrani B, Thiery JP, et al. Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance. Breast Cancer Res 2004;6:R556–70. [14] Chaplin M. What are biosensors? 2004. Available from: http://www.lsbu.ac.uk/biology/enztech/biosensors.html. Accessed Sep 24 2010. [15] Tothill IE, Turner APF. Bionsensors. In: Caballero B, Trugo L, Finglas P, editors. Encyclopedia of Food Sciences and Nutrition. New York, NY: Academic Press; 2003:489–499. [16] Mikkelsen SR. Electrochemical biosensors for DNA sequence detection. Electroanalysis. 1996;8(1):15–19. [17] Gooding JJ. Electrochemical sensors for DNA interactions and damage. Electroanalysis. 2002;14:1149–1156. [18] Wang J, Kawde A-N. Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Anal Chim Acta. 2001; 431(2):219–224. [19] Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst. 2007;132(9):835–841. [20] Chan LL, Gosangari SL, Watkin KL, Cunningham BT. A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation. Apoptosis. 2007;12:1061–1068. [21] Jacobson KB. Biosensors and other medical and environmental probes. Available from: http://www.ornl.gov/info/ornlreview/rev29_3/text/ biosens.htm. Accessed Sep 24 2010. [22] Dell’Atti D, Tombelli S, Minunni M, Mascini M. Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosens Bioelectron. 2006;21(10):1876–1879. [23] Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem. 2008;80(4):1067–1072. [24] X.R. Zhang, Y.S. Guo, M.S. Liu, S. Zhang. Photoelectrochemically active species and photoelectrochemical biosensors. RSC Advances, 2013, 3, 2846 [25] P. Wang, L. Ge, S. Ge, J. Yu, M. Yan, J. Huang, Chemical Communications 49 (2013) 3294–3296. [26] H.B. Li, J. Li, Q. Xu, X.Y. Hu. Cathode photoelectrochemical sensing of copper(II) based on analyte-induced formation of exciton trapping. Chem. Commun., 2012, 48, 10216–10218. [27] W.W. Zhao, J. Wang, J.J. Xu, H.Y. Chen. Photoelectrochemical aptasensing, TrAC Trends in Analytical Chemistry Volume 82, September 2016, Pages 307-315 [28] G.L. Wang, J.J. Xu, H.Y. Chen, Nanoscale 2 (2010) 1112–1114. [29] G.L. Wang, J.J. Xu, H.Y. Chen, S.Z. Fu, Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation, Biosensors and Bioelectronics , Volume 24, Issue 8, 15 April 2009, Pages 2494-2498. [30] P. Wang, X.Y. Ma, M.Q. Su, Q. Hao, J.P. Lei, H.X. Ju, Cathode photoelectrochemical sensing of copper(II) based on analyte-induced formation of exciton trapping, Chemical Communications 48 (2012) 10216–10218. [31] Y.T. Yan, Q. Liu, X.J. Du, J. Qian, H.P. Mao, K. Wang, Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles, Analytica Chimica Acta, Vol.853 258-264 (2015) [32] J.X. Zhang, L.P Tu, S. Zhao, G.H. Liu, Y.Y. Wang, Y. Wang, Z. Yue, Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose, Biosensors and Bioelectronics, vol.67 296-302 (2015) [33] X. Hun, S.S. Wang, S.Y. Wang, J.K. Zhao, X.L. Luo, A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode, Sensors and Actuators B: Chemical Vol. 249, 83-89 (2017) [34] Q. Zhou, Y.X. Lin, K.Y. Zhang, M.J. Li, D.P. Tang, Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device, Biosensors and Bioelectronics, Volume 101, 146-152 (2018) [35] Qing Hua Wang, et al. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7, 699-712 (2012).sulfurization, Nanoscale 4, 6637-6641 (2012). [36] Haining Wang, Changjian Zhang, Farhan Rana, Surface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS2, Nano Lett., vol.15 ,8204-8210(2015) [37] Strait, J. H.; Nene, P.; Rana, F. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 245402. [38] Wang, H.; Zhang, C.; Rana, F. Nano Lett. 2015, 15, 339−345 [39] Wang, H.; Strait, J. H.; Zhang, C.; Chan, W.; Manolatou, C.; Tiwari, S.; Rana, F. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 165411. [40] K.S. Novoselov, et al. “Electric field effect in atomically thin carbon films,” Science 306, 666-669 (2004). [41] Changgu Lee, et al. “Anomalous lattice vibrations of single- and few-layer MoS2,” ACS Nano 4, 2695-2700 (2010). [42] Shanshan Wang, et al. “Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition,” ACS Publications 26, 6371-6379 (2014). [43] Jaeho Jeon, et al. “Layer-controlled CVD growth of large-area two-dimensional MoS2 film,” Nanoscale 7, 1688-1695 (2015). [44] Zeng Z, et al. “Single-layer semiconducting nanosheets: high-yield preparation and device fabrication,” Angewandte Chemie 50, 11093-11097 (2011). [45] TaiZhe Lin et al. “Controlled layer-by-layer etching of MoS2,” ACS applied Materials & Interfaces 7, 15892-15897 (2015). [46] Yu-Chuan Lin et al. “Wafer-scale MoS2 thin layers prepared by MoO3 [47] Rui Chen, Zuoshan Wang, Qingqing Zhou, Juan Lu, and Min Zheng, A Template-Free Microwave Synthesis of One-Dimensional Cu2O Nanowires with Desired Photocatalytic Property, Materials (Basel), (2018) [48] Zhaoke Zheng, Baibiao Huang, Zeyan Wang, Meng Guo, Xiaoyan Qin, Xiaoyang Zhang, Peng Wang, Ying Dai, Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions, J. Phys. Chem. C, 14448-14453(2009) [49] Chang Liu, Ya-Huei Chang, Jianan Chen, Shien-Ping Feng, Electrochemical Synthesis of Cu2O Concave Octahedrons with High-Index Facets and Enhanced Photoelectrochemical Activity, ACS Appl. Mater. Interfaces, 39027-39033(2017) [50] Zhang, Z.; Wang, P. Highly Stable Copper Oxide Composite as an Effective Photocathode for Water Splitting Via a Facile Electrochemical Synthesis Strategy. J. Mater. Chem. 2012, 22, 2456−2464. [51] Wan-Chen Huang, Lian-Ming Lyu, Yu-Chen Yang, Michael H. Huang, Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, J. Am. Chem. Soc., 1261-1267(2011) [52] Ho, J.-Y.;Huang,M.H. J. Phys. Chem. C 2009, 113, 14159–14164. [53] M. R. V. Georgieva, “Electrodeposited cuprous oxide on indium tin oxide,for solar applications,” Solar Energy Materials & Solar Cells 73, 67-73 (2002). [54] T. S. H. Tanaka, T. Miyata, H. Sato, T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO–Cu2O heterojunctions,” Applied Surface Science 244, 568-572 (2005). [55] E. S. A. Mittiga, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Applied Physics Letters 88 (2006). [56] C. L. H. T. J. Hsueh, S. J. Chang, P. W. Guo, J. H. Hsiehc and I. Chend, “Cu2O /n-ZnO nanowire solar cells on ZnO:Ga/glass templates,” Scripta Materialia 57, 53-56 (2007). [57] A. M. S. S. Jeong, E. Salza, A. Masci, S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochimica Acta 53, 2226-2231 (2008). [58] D.-F. Zhang, H. Zhang, L. Guo, K. Zheng, X.-D. Han, and Z. Zhang, “Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability, Journal of Materials Chemistry 19, 5220 (2009). [59] K. P. Musselman, A. Marin, A. Wisnet, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO- Cu2O Photovoltaics, Advanced Functional Materials 21, 573-582 (2011). [60] K. P. Musselman, A. Marin, L. Schmidt-Mende, and J. L. MacManus-Driscoll, Incompatible Length Scales in Nanostructured Cu2O Solar Cells, Advanced Functional Materials 22, 2202-2208 (2012). [61] K. Chen, and D. Xue, “pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra,” CrystEngComm 14, 8068 (2012). [62] Y. N. Tadatsugu Minami, Toshihiro Miyata, “High-Efficiency Cu2O -Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer,” Applied Physics Express 6 (2013). [63] Yi meng Feng, Guo jing Wang, Jie cui Liao, Wei Li, Chien hua Chen, Ming yang Li, Zheng cao Li, Honeycomb-like ZnO Mesoporous Nanowall Arrays Modified with Ag Nanoparticles for Highly Efficient Photocatalytic Activity, Scientific Reports, 11622 (2017) [64] Laudise, "HYDROTHERMAL SYNTHESIS OF ZIKC," J. Phys. Chem 64, 688–691 (1960). [65] R. S. Wagner, "Study of the Filamentary Growth of Silicon Crystals from the Vapor," Journal of Applied Physics 35, 2993 (1964). [66] C. M. Lieber, "Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes," science 277, 1971-1975 (1997). [67] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth," Science 270, 1791-1794 (1995). [68] E. Matijević, "Preparation of uniform zinc oxide colloids by controlled double-jet precipitation," J. Mater. Chem. 6, 443-447 (1996). [69] L. Vayssieres, "Three-Dimensional Array of Highly," Chem. Mater 13 (2001). [70] P.Yang, "One-dimensional nanostructures synthesis, characterization, and applications.," Advanced Functional Materials 15 (2003). [71] Parkin DM, Bray F. Evaluation of data quality in the cancer registry: principles and methods Part II. Completeness. Eur J Cancer. 2009;45:756–764. [72] 1984, "Biologic Properties of Three Newly Established Human Esophageal Carcinoma Cell.," J Natl Cancer Inst 72, 577-583 (Cheng-po Hu). [73] ZhiguangXiao, SharonLa Fontaine, Ashley I.Bush, Anthony G.Wedd, Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol–Disulfide Exchange between Protein Thiols and Glutathione, Journal Of Molecular Biology, vol.431 158-177(2019) [74] J.J. Mieyal, M.M. Gallogly, S. Qanungo, E.A. Sabens, M.D. Shelton Molecular mechanisms and clinical implications of reversible protein S-glutathionylation Antioxid. Redox Signal., 10 (2008), pp. 1941-1988 [75] Young-Mi Go, Dean P. Jones, Thiol/disulfide redox states in signaling and sensing, NIH-PA Author Manuscript, vol.48(2) 173-181 (2013) [76] Molecular and cellular aspects of thiol-disulfide exchange. Gilbert HF Adv Enzymol Relat Areas Mol Biol. 1990; 63:69-172. [77] S. Childs, N. Haroune, L. Williams, M. Gronow, Determination of cellular glutathione:glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection, J. Chromatogr. A., 1437 (2016), pp. 67-73, [78] P.M. Olmos Moya, M. Martínez Alfaro, R. Kazemi, M.A. Alpuche-Avilés, S. Griveau, F. Bedioui, S. Gutiérrez Granados, Simultaneous electrochemical speciation of oxidized and reduced glutathione., Redox profiling of oxidative stress in biological fluids with a modified carbon electrode Anal. Chem., 89 (2017), pp. 10726-10733 [79] P. Monostori, G. Wittmann, E. Karg, S. Túri, Determination of glutathione and glutathione disulfide in biological samples: an in-depth review, J. Chromatogr. B., 877 (2009), pp. 3331-3346 [80] G. Kalaiyarasan, A.V. Narendra Kumar, C. Sivakumar, J. Joseph, Electro-generated reactive oxygen species at Au surface as an indicator to explore glutathione redox chemistry and quantification, Electrochem. Commun., 56 (2015), pp. 29-33, [81] B. Zhang, J. Liu, X. Ma, P. Zuo, B.C. Ye, Y. Li, Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors, Biosens. Bioelectron., 80 (2016), pp. 491-496 [82] V. Vinoth, J.J. Wu, A.M. Asiri, S. Anandan, Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione, Ultrason. Sonochem., 39 (2017), pp. 363-373 [83] James C. Moore and Cody V. Thompson, A Phenomenological Model for the Photocurrent Transient Relaxation Observed in ZnO-Based Photodetector Devices, Sensors (Basel), (8)(2013) [84] Li Q., Gao T., Wang Y., Wang T. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 2005;86 doi: 10.1063/1.1883711. [85] Jens Reemts and Achim Kittel, Persistent photoconductivity in highly porous ZnO films, Journal of Applied Physics 101, 013709 (2007) [86] C.Guillén, J.Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes, Journal of Alloys and Compounds, Vol.737, 718-724(2018) [87] Minh Dao Tran, Ji-Hee Kim, Hyun Kim, Manh Ha Doan, Dinh Loc Duong, Young Hee Lee, Role of Hole Trap Sites in MoS2 for Inconsistency in Optical and Electrical Phenomena, ACS Appl. Mater. Interfaces, 10580-10586(2018) [88] Wu, Y.-C.; Liu, C.-H.; Chen, S.-Y.; Shih, F.-Y.; Ho, P.-H.; Chen, C.-W.; Liang, C.-T.; Wang, W.-H. Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors. Sci. Rep. 2015, 5, 11472 [89] Meng-Lin Tsai, Sheng-Han Su, Jan-Kai Chang, Dung-Sheng Tsai, Chang-Hsiao Chen, Chih-I Wu, Lain-Jong Li, Lih-Juann Chen and Jr-Hau He, Monolayer MoS2 Heterojunction Solar Cells, acsnano, vol. 8 NO. 8 8317–8322(2014) [90] Wenjing Zhang, et al. High-gain phototransistors based on a CVD MoS2 monolayer. Advanced materials 25, 3456-3461 (2013). [91] Jing Li, Hongbo Li, Yan Xue, Hailin Fang, Wei Wang, Facile electrodeposition of environment-friendly Cu2O /ZnOheterojunction for robust photoelectrochemical biosensing, Sensors and Actuators B: Chemical, 619-624(2014) [92] K. S, "Evidence for a glycoconjugate form of glutathione S-transferase pI.," Int J Pept Protein Res 37, 565-571 (1991) [93] Dancheng Zhu, Haibo Shu, Feng Jiang, Danhui Lv, Vijayshankar Asokan, Omar Omar, Jun Yuan, Ze Zhang andChuanhong Jin, Capture the growth kinetics of CVD growth of twodimensional MoS2, npj 2D Materials and Applications, 8 (2017) [94] I-Chen Wu, Yu-Hsin Weng, Ming-Yen Lu, Chun-Ping Jen, Vladimir E. Fedorov, Wei Chung Chen, Ming Tsang Wu, Chie-Tong Kuo, and Hsiang-Chen Wang, Nano-structure ZnO/ Cu2O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection, Optics Express, Vol. 25, Issue 7, pp. 7689-7706 (2017)
|