跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘柔吟
研究生(外文):PAN, ROU-YIN
論文名稱:P型及N型生物感測器製備及其應用於食道癌細胞之光電化學響應分析
論文名稱(外文):Fabrication of P-type and N-type Nanostructure Biosensor Applied for Photoelectrochemical Response Analysis of Esophageal Cancer Cells
指導教授:王祥辰
指導教授(外文):WANG, HSIANG-CHEN
口試委員:張憲彰黃建璋江振國王祥辰
口試委員(外文):CHANG, HSIEN-CHANGHUANG, JIAN-JANGCHIANG, CHEN-KUOWANG, HSIANG-CHEN
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:123
中文關鍵詞:食道鱗狀上皮癌細胞暫態光電流光電化學生物感測器穀胱甘肽
外文關鍵詞:esophageal squamous cell carcinomatransient photocurrentphotoelectrochemical biosensorL Glutathione reduced
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要透過製備材料表面載子型態為P型及N型的光電化學生物感測器,我們將利用此元件來檢測食道鱗狀上皮癌細胞之癌變程度並加以分析。長年來國人罹患癌症的機率節節攀升以致於現今社會對於癌症的預防及治療極為重視,因此找尋能夠最快速檢測癌症的方法,一直以來都是學術界及醫學界間相互交流並共同努力的目標。
本研究利用實驗室所架設的光電流量測系統,透過光生電荷的載子傳輸機制,來討論特徵物質與材料性質間的相關性,並將此結果加以檢測食道鱗狀上皮癌細胞的暫態光電流。本研究著重於表面載子型態為P型之生物感測器,使用不同癌變程度及不同細胞數量來分析癌細胞之光電化學響應間的關係。從研究結果顯示,癌細胞侵襲能力越強使得元件的光電流越小,這是由於光生電荷在載子分離過程中,癌細胞本身少量的穀胱甘肽(L -Glutathione reduced, GSH)不易將電荷分離,使得光電流下降,但這樣的結果仍足以辨識癌化程度,其數值具有一定水準的鑑別度,另外透過調變細胞數量即可以將檢測誤差值降到最低,檢測時間約5分鐘,且元件可重覆使用。
未來將規劃以此生物感測器做原發性腫瘤的追蹤,透過人工智慧技術設計出人性化顯示介面,即能讓大眾更快速且明確的理解檢測結果,爾後將此技術應用於臨床醫學上,在未來將能建立醫師與病患間共同溝通的橋樑,對於癌症知識能夠普及大眾並達到及早發現及早治療的願景將指日可待。
In this study, we fabricated the photoelectrochemical biosensors which surface of materials with P-type and N-type carrier types. We will use this component to detect and analyze the degree of carcinogenesis of esophageal squamous cell carcinoma. Over the years, the probability of people suffering from cancer has gradually increased, so that today's society attaches great importance to the prevention and treatment of cancer. Therefore, looking for the fastest way to detect cancer has always been the goal of mutual exchange and joint efforts between academia and the medical community.
In this study, we used the photocurrent measurement system set up in the laboratory. To discuss the correlation between characteristic substances and material properties through the charge transfer mechanism of photogenerated charges. According to the results, we use to detecting transient photocurrents in esophageal squamous cell carcinoma cells. This study focused on the biosensor with a surface carrier type of P-type, using different degrees of cancer and different cell numbers to analyze the relationship between photoelectrochemical responses of cancer cells. From the research results, the stronger the invasive ability of cancer cells, the smaller the photocurrent of the component. Because of the photogenerated charges are not easy to separate the charge when the carrier is separated so that the photocurrent decreases. However, such a result is still sufficient to identify the degree of canceration, and the value has a certain level of discrimination. In addition, the detection error value can be minimized by modulating the number of cells, the detection time is about 5 minutes, and the components can be reused.
In the future, we will plan to use this biosensor to track the primary tumor and design a humanized display interface through artificial intelligence technology, which will enable the public to understand the test results more quickly and clearly, and then apply this technology to clinical medicine. In the future, we will be able to establish a bridge of communication between physicians and patients. The vision of cancer knowledge to reach the public and achieve early detection and early treatment will be just around the corner.
目錄
光機電整合工程研究所 1
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2癌細胞生物感測器 2
1-2-1 癌症標記物 2
1-2-2 生物感測器的組成 3
1-2-3 生物感測器的種類 4
1-3 光電化學生物感測器 7
1-4 研究動機 9
1-5 論文架構 10
第二章 文獻回顧 11
2-1 二硫化鉬 11
2-1-1 二硫化鉬材料特性 11
2-1-2 二硫化鉬光電特性 11
2-1-3 二硫化鉬合成方法 13
2-2 氧化亞銅 17
2-2-1 氧化亞銅材料特性 17
2-2-2 氧化亞銅光電特性 17
2-2-3 氧化亞銅合成方法 19
2-3 氧化鋅 22
2-3-1 氧化鋅材料特性 22
2-3-2 氧化鋅光電特性 22
2-3-3 氧化鋅合成方式 25
2-4 癌細胞株簡介 27
2-4-1 食道癌細胞 27
2-4-2 穀胱甘肽(L -Glutathione reduced, GSH) 27
2-5 暫態光電流 32
2-5-1 氧化鋅的暫態光電流 33
2-5-2 氧化亞銅的暫態光電流 33
2-5-3 二硫化鉬的暫態光電流 34
第三章 實驗步驟及方法 61
3-1 實驗材料及藥品規格 61
3-2 實驗流程及步驟 62
3-2-1 基板清潔步驟 62
3-2-2 單層二硫化鉬製備步驟 62
3-2-3 氧化亞銅薄膜製備步驟 64
3-2-4 氧化鋅奈米柱製備步驟 65
3-2-5 P型光電化學生物感測器之異質結構製備步驟 67
3-2-6 癌細胞培養步驟 68
3-3 量測儀器介紹 69
3-3-1 光學顯微鏡 (Optical Microscope, OM) 69
3-3-2場發射掃描式電子顯微鏡 (Scanning Electron Microscrope, SEM) 69
3-3-3紫外光-可見光光譜儀 (UV-VIS Spectrometers) 70
3-3-4 X光繞射儀 (X-ray diffractometer) 70
3-3-5光致螢光光譜分析儀(Photoluminescence, PL) 71
3-3-6霍爾效應分析儀(Hall Effect Analyzer) 72
3-3-7 響應分析實驗配置系統 72
第四章 結果與討論 90
4-1 光電化學生物感測器結構特性分析 90
4-1-1 MoS2/p-Cu2O奈米異質結構 90
4-1-2 N-ZnO/P-Cu2O奈米異質接面 92
4-2 光電流響應分析 94
4-2-1 P型及N型結構對於檢測穀胱甘肽之分析 94
4-2-2 P型結構對於辨別癌細胞期數及細胞濃度之分析 96
第五章 結論與未來展望 115
參考文獻 117
[1] Brian Bohunicky, Shaker A Mousa. “Biosensors: the new wave in cancer diagnosis” Nanotechnology, Science and Applications. (2010)
[2] NCI. Biomarker. 2009. Available from: http://www.cancer.gov/dictionary/?searchTxt=biomarker. Accessed Sep 24 2010.
[3] Gunawardana CG, Diamandis EP. High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett 2007;249:110–9.
[4] Chen YT, Scanlan MJ, Sahin U, Tureci AO, Gure ST, Williamson B, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997;94:1914–8.
[5] Jager D, Stockert E, Gure AO, Scanlan MJ, Karbach J, Jager E, et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res 2001;61:2055–61.
[6] Parker S, Lim Y, Lee D, Cho B, Bang YJ, Sung S, et al. Identification and characterization of a novel cancer/testis antigen gene CAGE-1. Biochim Biophys Acta 2003;1625:173–82.
[7] Basil CF, Zhao Y, Zavaglia K, et al. Common cancer biomarkers. Cancer Res. 2006;66(6):2953–2961.
[8] Clinical practice guidelines for the use of tumor markers in breast and colorectal cancer. Adopted on 1996 May 17 by the American Society of Clinical Oncology. J Clin Oncol. 1996;14(10):2843–2877.
[9] Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20(1):55–62.
[10] Hu XC, Wang Y, Shi DR, Loo TY, Chow LW. Immunomagnetic tumor cell enrichment is promising in detecting circulating breast cancer cells. Oncology 2003;64:160–5.
[11] Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol 2004;32:891–904.
[12] Zieglschmid V, Hollmann C, Gutierrez B, Albert W, Strothoff D, Gross E, et al. Combination of immunomagnetic enrichment with multiplex RTPCR analysis for the detection of disseminated tumor cells. Anticancer Res 2005;25:1803–10.
[13] Choesmel V, Pierga JY, Nos C, Vincent-Salomon A, Sigal-Zafrani B, Thiery JP, et al. Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance. Breast Cancer Res 2004;6:R556–70.
[14] Chaplin M. What are biosensors? 2004. Available from: http://www.lsbu.ac.uk/biology/enztech/biosensors.html. Accessed Sep 24 2010.
[15] Tothill IE, Turner APF. Bionsensors. In: Caballero B, Trugo L, Finglas P, editors. Encyclopedia of Food Sciences and Nutrition. New York, NY: Academic Press; 2003:489–499.
[16] Mikkelsen SR. Electrochemical biosensors for DNA sequence detection. Electroanalysis. 1996;8(1):15–19.
[17] Gooding JJ. Electrochemical sensors for DNA interactions and damage. Electroanalysis. 2002;14:1149–1156.
[18] Wang J, Kawde A-N. Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Anal Chim Acta. 2001; 431(2):219–224.
[19] Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst. 2007;132(9):835–841.
[20] Chan LL, Gosangari SL, Watkin KL, Cunningham BT. A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation. Apoptosis. 2007;12:1061–1068.
[21] Jacobson KB. Biosensors and other medical and environmental probes. Available from: http://www.ornl.gov/info/ornlreview/rev29_3/text/ biosens.htm. Accessed Sep 24 2010.
[22] Dell’Atti D, Tombelli S, Minunni M, Mascini M. Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosens Bioelectron. 2006;21(10):1876–1879.
[23] Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem. 2008;80(4):1067–1072.
[24] X.R. Zhang, Y.S. Guo, M.S. Liu, S. Zhang. Photoelectrochemically active species and photoelectrochemical biosensors. RSC Advances, 2013, 3,
2846
[25] P. Wang, L. Ge, S. Ge, J. Yu, M. Yan, J. Huang, Chemical Communications 49 (2013) 3294–3296.
[26] H.B. Li, J. Li, Q. Xu, X.Y. Hu. Cathode photoelectrochemical sensing of copper(II) based on analyte-induced formation of exciton trapping. Chem. Commun., 2012, 48, 10216–10218.
[27] W.W. Zhao, J. Wang, J.J. Xu, H.Y. Chen. Photoelectrochemical aptasensing, TrAC Trends in Analytical Chemistry Volume 82, September 2016, Pages 307-315
[28] G.L. Wang, J.J. Xu, H.Y. Chen, Nanoscale 2 (2010) 1112–1114.
[29] G.L. Wang, J.J. Xu, H.Y. Chen, S.Z. Fu, Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation, Biosensors and Bioelectronics , Volume 24, Issue 8, 15 April 2009, Pages 2494-2498.
[30] P. Wang, X.Y. Ma, M.Q. Su, Q. Hao, J.P. Lei, H.X. Ju, Cathode photoelectrochemical sensing of copper(II) based on analyte-induced formation of exciton trapping, Chemical Communications 48 (2012) 10216–10218.
[31] Y.T. Yan, Q. Liu, X.J. Du, J. Qian, H.P. Mao, K. Wang, Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles, Analytica Chimica Acta, Vol.853 258-264 (2015)
[32] J.X. Zhang, L.P Tu, S. Zhao, G.H. Liu, Y.Y. Wang, Y. Wang, Z. Yue, Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose, Biosensors and Bioelectronics, vol.67 296-302 (2015)
[33] X. Hun, S.S. Wang, S.Y. Wang, J.K. Zhao, X.L. Luo, A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode, Sensors and Actuators B: Chemical Vol. 249, 83-89 (2017)
[34] Q. Zhou, Y.X. Lin, K.Y. Zhang, M.J. Li, D.P. Tang, Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device, Biosensors and Bioelectronics, Volume 101, 146-152 (2018)
[35] Qing Hua Wang, et al. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7, 699-712 (2012).sulfurization, Nanoscale 4, 6637-6641 (2012).
[36] Haining Wang, Changjian Zhang, Farhan Rana, Surface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS2, Nano Lett., vol.15 ,8204-8210(2015)
[37] Strait, J. H.; Nene, P.; Rana, F. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 245402.
[38] Wang, H.; Zhang, C.; Rana, F. Nano Lett. 2015, 15, 339−345
[39] Wang, H.; Strait, J. H.; Zhang, C.; Chan, W.; Manolatou, C.; Tiwari, S.; Rana, F. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 165411.
[40] K.S. Novoselov, et al. “Electric field effect in atomically thin carbon films,” Science 306, 666-669 (2004).
[41] Changgu Lee, et al. “Anomalous lattice vibrations of single- and few-layer MoS2,” ACS Nano 4, 2695-2700 (2010).
[42] Shanshan Wang, et al. “Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition,” ACS Publications 26, 6371-6379 (2014).
[43] Jaeho Jeon, et al. “Layer-controlled CVD growth of large-area two-dimensional MoS2 film,” Nanoscale 7, 1688-1695 (2015).
[44] Zeng Z, et al. “Single-layer semiconducting nanosheets: high-yield preparation and device fabrication,” Angewandte Chemie 50, 11093-11097 (2011).
[45] TaiZhe Lin et al. “Controlled layer-by-layer etching of MoS2,” ACS applied Materials & Interfaces 7, 15892-15897 (2015).
[46] Yu-Chuan Lin et al. “Wafer-scale MoS2 thin layers prepared by MoO3
[47] Rui Chen, Zuoshan Wang, Qingqing Zhou, Juan Lu, and Min Zheng, A Template-Free Microwave Synthesis of One-Dimensional Cu2O Nanowires with Desired Photocatalytic Property, Materials (Basel), (2018)
[48] Zhaoke Zheng, Baibiao Huang, Zeyan Wang, Meng Guo, Xiaoyan Qin, Xiaoyang Zhang, Peng Wang, Ying Dai, Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions, J. Phys. Chem. C, 14448-14453(2009)
[49] Chang Liu, Ya-Huei Chang, Jianan Chen, Shien-Ping Feng, Electrochemical Synthesis of Cu2O Concave Octahedrons with High-Index Facets and Enhanced Photoelectrochemical Activity, ACS Appl. Mater. Interfaces, 39027-39033(2017)
[50] Zhang, Z.; Wang, P. Highly Stable Copper Oxide Composite as an Effective Photocathode for Water Splitting Via a Facile Electrochemical Synthesis Strategy. J. Mater. Chem. 2012, 22, 2456−2464.
[51] Wan-Chen Huang, Lian-Ming Lyu, Yu-Chen Yang, Michael H. Huang, Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity, J. Am. Chem. Soc., 1261-1267(2011)
[52] Ho, J.-Y.;Huang,M.H. J. Phys. Chem. C 2009, 113, 14159–14164.
[53] M. R. V. Georgieva, “Electrodeposited cuprous oxide on indium tin oxide,for solar applications,” Solar Energy Materials & Solar Cells 73, 67-73 (2002).
[54] T. S. H. Tanaka, T. Miyata, H. Sato, T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO–Cu2O heterojunctions,” Applied Surface Science 244, 568-572 (2005).
[55] E. S. A. Mittiga, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Applied Physics Letters 88 (2006).
[56] C. L. H. T. J. Hsueh, S. J. Chang, P. W. Guo, J. H. Hsiehc and I. Chend, “Cu2O /n-ZnO nanowire solar cells on ZnO:Ga/glass templates,” Scripta Materialia 57, 53-56 (2007).
[57] A. M. S. S. Jeong, E. Salza, A. Masci, S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells,” Electrochimica Acta 53, 2226-2231 (2008).
[58] D.-F. Zhang, H. Zhang, L. Guo, K. Zheng, X.-D. Han, and Z. Zhang, “Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability, Journal of Materials Chemistry 19, 5220 (2009).
[59] K. P. Musselman, A. Marin, A. Wisnet, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO- Cu2O Photovoltaics, Advanced Functional Materials 21, 573-582 (2011).
[60] K. P. Musselman, A. Marin, L. Schmidt-Mende, and J. L. MacManus-Driscoll, Incompatible Length Scales in Nanostructured Cu2O Solar Cells, Advanced Functional Materials 22, 2202-2208 (2012).
[61] K. Chen, and D. Xue, “pH-assisted crystallization of Cu2O: chemical reactions control the evolution from nanowires to polyhedra,” CrystEngComm 14, 8068 (2012).
[62] Y. N. Tadatsugu Minami, Toshihiro Miyata, “High-Efficiency Cu2O -Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer,” Applied Physics Express 6 (2013).
[63] Yi meng Feng, Guo jing Wang, Jie cui Liao, Wei Li, Chien hua Chen, Ming yang Li, Zheng cao Li, Honeycomb-like ZnO Mesoporous Nanowall Arrays Modified with Ag Nanoparticles for Highly Efficient Photocatalytic Activity, Scientific Reports, 11622 (2017)
[64] Laudise, "HYDROTHERMAL SYNTHESIS OF ZIKC," J. Phys. Chem 64, 688–691 (1960).
[65] R. S. Wagner, "Study of the Filamentary Growth of Silicon Crystals from the Vapor," Journal of Applied Physics 35, 2993 (1964).
[66] C. M. Lieber, "Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes," science 277, 1971-1975 (1997).
[67] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth," Science 270, 1791-1794 (1995).
[68] E. Matijević, "Preparation of uniform zinc oxide colloids by controlled double-jet precipitation," J. Mater. Chem. 6, 443-447 (1996).
[69] L. Vayssieres, "Three-Dimensional Array of Highly," Chem. Mater 13 (2001).
[70] P.Yang, "One-dimensional nanostructures synthesis, characterization, and applications.," Advanced Functional Materials 15 (2003).
[71] Parkin DM, Bray F. Evaluation of data quality in the cancer registry: principles and methods Part II. Completeness. Eur J Cancer. 2009;45:756–764.
[72] 1984, "Biologic Properties of Three Newly Established Human Esophageal Carcinoma Cell.," J Natl Cancer Inst 72, 577-583 (Cheng-po Hu).
[73] ZhiguangXiao, SharonLa Fontaine, Ashley I.Bush, Anthony G.Wedd, Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol–Disulfide Exchange between Protein Thiols and Glutathione, Journal Of Molecular Biology, vol.431 158-177(2019)
[74] J.J. Mieyal, M.M. Gallogly, S. Qanungo, E.A. Sabens, M.D. Shelton Molecular mechanisms and clinical implications of reversible protein S-glutathionylation Antioxid. Redox Signal., 10 (2008), pp. 1941-1988
[75] Young-Mi Go, Dean P. Jones, Thiol/disulfide redox states in signaling and sensing, NIH-PA Author Manuscript, vol.48(2) 173-181 (2013)
[76] Molecular and cellular aspects of thiol-disulfide exchange. Gilbert HF Adv Enzymol Relat Areas Mol Biol. 1990; 63:69-172.
[77] S. Childs, N. Haroune, L. Williams, M. Gronow, Determination of cellular glutathione:glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection, J. Chromatogr. A., 1437 (2016), pp. 67-73,
[78] P.M. Olmos Moya, M. Martínez Alfaro, R. Kazemi, M.A. Alpuche-Avilés, S. Griveau, F. Bedioui, S. Gutiérrez Granados, Simultaneous electrochemical speciation of oxidized and reduced glutathione., Redox profiling of oxidative stress in biological fluids with a modified carbon electrode Anal. Chem., 89 (2017), pp. 10726-10733
[79] P. Monostori, G. Wittmann, E. Karg, S. Túri, Determination of glutathione and glutathione disulfide in biological samples: an in-depth review, J. Chromatogr. B., 877 (2009), pp. 3331-3346
[80] G. Kalaiyarasan, A.V. Narendra Kumar, C. Sivakumar, J. Joseph, Electro-generated reactive oxygen species at Au surface as an indicator to explore glutathione redox chemistry and quantification, Electrochem. Commun., 56 (2015), pp. 29-33,
[81] B. Zhang, J. Liu, X. Ma, P. Zuo, B.C. Ye, Y. Li, Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors, Biosens. Bioelectron., 80 (2016), pp. 491-496
[82] V. Vinoth, J.J. Wu, A.M. Asiri, S. Anandan, Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione, Ultrason. Sonochem., 39 (2017), pp. 363-373
[83] James C. Moore and Cody V. Thompson, A Phenomenological Model for the Photocurrent Transient Relaxation Observed in ZnO-Based Photodetector Devices, Sensors (Basel), (8)(2013)
[84] Li Q., Gao T., Wang Y., Wang T. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 2005;86 doi: 10.1063/1.1883711.
[85] Jens Reemts and Achim Kittel, Persistent photoconductivity in highly porous ZnO films, Journal of Applied Physics 101, 013709 (2007)
[86] C.Guillén, J.Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes, Journal of Alloys and Compounds, Vol.737, 718-724(2018)
[87] Minh Dao Tran, Ji-Hee Kim, Hyun Kim, Manh Ha Doan, Dinh Loc Duong, Young Hee Lee, Role of Hole Trap Sites in MoS2 for Inconsistency in Optical and Electrical Phenomena, ACS Appl. Mater. Interfaces, 10580-10586(2018)
[88] Wu, Y.-C.; Liu, C.-H.; Chen, S.-Y.; Shih, F.-Y.; Ho, P.-H.; Chen, C.-W.; Liang, C.-T.; Wang, W.-H. Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors. Sci. Rep. 2015, 5, 11472
[89] Meng-Lin Tsai, Sheng-Han Su, Jan-Kai Chang, Dung-Sheng Tsai, Chang-Hsiao Chen, Chih-I Wu, Lain-Jong Li, Lih-Juann Chen and Jr-Hau He, Monolayer MoS2 Heterojunction Solar Cells, acsnano, vol. 8 NO. 8 8317–8322(2014)
[90] Wenjing Zhang, et al. High-gain phototransistors based on a CVD MoS2 monolayer. Advanced materials 25, 3456-3461 (2013).
[91] Jing Li, Hongbo Li, Yan Xue, Hailin Fang, Wei Wang, Facile electrodeposition of environment-friendly Cu2O /ZnOheterojunction for robust photoelectrochemical biosensing, Sensors and Actuators B: Chemical, 619-624(2014)
[92] K. S, "Evidence for a glycoconjugate form of glutathione S-transferase pI.," Int J Pept Protein Res 37, 565-571 (1991)
[93] Dancheng Zhu, Haibo Shu, Feng Jiang, Danhui Lv, Vijayshankar Asokan, Omar Omar, Jun Yuan, Ze Zhang andChuanhong Jin, Capture the growth kinetics of CVD growth of twodimensional MoS2, npj 2D Materials and Applications, 8 (2017)
[94] I-Chen Wu, Yu-Hsin Weng, Ming-Yen Lu, Chun-Ping Jen, Vladimir E. Fedorov, Wei Chung Chen, Ming Tsang Wu, Chie-Tong Kuo, and Hsiang-Chen Wang, Nano-structure ZnO/ Cu2O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection, Optics Express, Vol. 25, Issue 7, pp. 7689-7706 (2017)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top