跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范宏瑋
研究生(外文):FAN, HONG-WEI
論文名稱:生物感測晶片製備及應用於癌細胞之阻抗與光電化學響應分析
論文名稱(外文):Biosensing chip fabrication and application to cancer cells for impedance and photoelectrochemical response analysis
指導教授:王祥辰
指導教授(外文):WANG, HSIANG-CHEN
口試委員:張憲彰黃建璋江振國王祥辰
口試委員(外文):CHANG, HSIEN-CHANGHUANG, JIAN-JANGCHIANG, CHEN-KUOWANG, HSIANG-CHEN
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:光電化學響應介電泳阻抗量測導納
外文關鍵詞:Photoelectrochemical ResponseDielectrophoresis Impedance MeasurementAdmittance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要針對整合光電流量測元件及阻抗量測元件並加以應用於人體癌化部位及癌病變程度分析作為本次研究的主軸。癌症位居國人十大死因之首,對抗癌症更是現今重要的課題之一,若能於癌症發病初期能快速為臨床提供準確的分析資訊,便能增加治癒的可能性。
本次研究中以矽太陽能元件之吸光層結合鋸齒狀指叉式電極(Serrated Interdigitated Electrode, SIE),使用四種不同類型的癌細胞臨床樣品,分別為CE81T食道癌細胞、OE21食道癌細胞、A549肺腺癌細胞、TSGH-8301膀胱癌細胞,我們以鋸齒狀指叉式電極透過介電泳阻抗量測對癌細胞進行聚集和阻抗分析,並以此方式辨別不同部位之癌細胞且透過太陽能元件之吸光層以光激載子方式使電子電洞對分離,利用GSH、GSSG之濃度催化機制進行光電流響應量並辨別相同部位不同癌病變程度之癌細胞臨床樣品。
實驗證明,本生物晶片利用介電泳的聚集癌細胞形成珍珠串,提供快速、無標記的癌細胞量測並在13分鐘內完成量測與辨別,每株癌細胞的阻抗值及光電流響應的變化與細胞數量呈線性關係,並利用導納值斜率以分辨癌病變部位及光電流響應斜率以辨別癌病變程度。

The study focused on the integration of photoelectric flow measurement components and impedance measurement components and applied to the analysis of human cancerous sites and cancer lesions as the main axis of this study. Cancer ranks first among the top ten causes of death among Chinese people. Fighting cancer is one of the most important issues today. If it can quickly provide accurate analysis information for the clinic in the early stage of cancer, it can increase the possibility of cure.
In this study, the light-absorbing layer of the solar element was combined with the SIE(Serrated Interdigitated Electrode), and four different types of cancer cell clinical samples were used, namely CE81T esophageal cancer cells, OE21 esophageal cancer cells, A549 lung adenocarcinoma cells, TSGH-8301 bladder cancer cells, we used a zigzag-toothed electrode to measure the aggregation and impedance of cancer cells by means of dielectrophoresis impedance measurement, and in this way, distinguish cancer cells in different parts and pass the light-absorbing layer of the solar element to the photo-activated carrier. The method is to separate the electron hole pair, and use the concentration catalytic mechanism of GSH and GSSG to carry out the photocurrent response amount and discriminate the cancer cell clinical samples of different cancerous lesions in the same site.
The experimental results show that the biosensing wafer can form a string of pearls by using dielectrophoresis of aggregated cancer cells, and provide rapid, label-free cancer cell measurement and can measure and discriminate with in 13 minutes, and the impedance of each cancer cell. The value and the change of photocurrent response are linear with the number of cells, and the slope of the admittance value is used to distinguish the lesion site and the photocurrent response slope to distinguish the degree of cancer lesion.

目錄
中文摘要 V
ABSTRACT VI
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XV
第一章 序論 16
1-1前言 16
1-2 生物感測晶片發展 17
1-3阻抗量測介紹 19
1-4光電化學量測介紹 21
1-5研究動機 22
第二章 文獻回顧 23
2-1文獻回顧 23
2-1-1介電泳理論 23
2-1-2介電泳晶片 30
2-1-3細胞阻抗量測 33
2-1-4 微電極於細胞量測 35
2-2細胞珍珠串現象 38
2-3細胞導納量測之計算公式 39
2-4等效電路模組之計算公式 41
2-5電場對細胞傷害及其影響 42
2-6光電化學量測 43
第三章 實驗設備及晶片設計/製作 46
3-1實驗設備及藥品 46
3-2培養細胞方法及步驟 49
3-2-1癌細胞培養液製備 49
3-2-2 細胞解凍及培養 50
3-2-3細胞繼代培養 50
3-2-4細胞計數 51
3-2-5細胞冷凍保存 52
3-3細胞溶液/樣本配製 53
3-4晶片設計及製作 53
3-5阻抗量測系統架設 61
3-5-1阻抗量測實驗步驟 62
3-6 光電響應系統架設 63
3-6-1光電流響應實驗步驟 64
第四章 結果與討論 65
4-1介電泳聚集細胞 65
4-2 R-Squared 定義 67
4-3介電泳阻抗量測結果 68
4-4光電化學響應量測結果 70
4-5 討論 72
第五章 結論 74
參考文獻 76
參考文獻
[1]Heaith Promotion Administration,Ministry of Health and Welfare, “R.O.C.,Cancer Registration Report at:
https://www.hpa.gov.tw/Home/Index.aspx”
[2]Chuang, C. H., Wei, C. H., Hsu, Y. M., Huang, H. S., Hsiao, F. Bin., "Impedance sensing of bladder cancer cells based on a single-cell-based DEP microchip," Proceedings of IEEE Sensors, 943–947 (2009).
[3]Hasan, M. R., Hassan, N., Khan, R., Kim, Y. T., Iqbal, S. M., "Classification of cancer cells using computational analysis of dynamic morphology," Computer Methods and Programs in Biomedicine, 156, 105–112 (2018).
[4]Clark, L. C., Lyons, C., "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Annals of the New York Academy of Sciences, 102(1), 29–45 (1962).
[5]Ishikawa, F. N., "A Calibration Method for Nanowire," ACS Nano 3, 3969–3976 (2009).
[6]Bakker, P. B. E., Bakker, E., "Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General," American Chemical Society 98, 593-1687 (1998).
[7]Wang, J., Kawde, A. N., Jan, M. R., "Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization," Biosensors & bioelectronics 20, 995-1000 (2004).
[8]Yan, M.; Ramström, O. Molecularly Imprinted Materials : Science and Technology; Marcel Dekker (2005).
[9]Kenneth S. Cole, Howard J. Curtis, "Electric impedance of single marine eggs," The Journal of General Physiology. 591–599 (1938).
[10]Coulter, W. H, "High speed automatic blood cell counter and cell size analyzer," Proc Natl Electron Conf. Chicago: National Electronics Conference, Inc.; 1957; pp 1034–1040 (1956)
[11]R. A. Hoffman, W. B. Britt, J. Histochem, "Flow-system measurement of cell impedance properties," Cytochem., 27(1), 234 (1978).
[12]Keese, C. R., "Monitoring fibroblast behavior in tissue culture with an applied electric field," Proc. Nadl. Acad. Sci., 81(June), 3761–3764, (1984).
[13]Graham, M. W., Shi, S. F., Ralph, D. C., Park, J., McEuen, P. L., "Photocurrent measurements of supercollision cooling in graphene," Nature Physics, 9(2), 103–108, (2013).
[14]Zhao, W. W., Xu, J. J., Chen, H. Y., "Photoelectrochemical bioanalysis: The state of the art," Chemical Society Reviews, 44(3), 729–741, (2015).
[15]Voccia, D., Bettazzi, F., Laschi, S., Gellini, C., Pietraperzia, G., Falciola, L., Palchetti, I., "Nanostructured Photoelectrochemical Biosensing Platform for Cancer Biomarker Detection," Procedia Technology, 27, 144–145, (2017).
[16]Wu, I. C., Weng, Y. H., Lu, M. Y., Jen, C. P., Fedorov, V. E., Chen, W. C., Wang, H. C., "Nano-structure ZnO/Cu2O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection," Optics Express, 25(7), 7689, (2017).
[17]Pohl, H. A., "Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields," Cambridge University Press, Cambridge, (1978)
[18]Pohl, H. A, Pollock, K., Dielectrophoretic Force : A Comparison of Theory and Experiment. 133–160, (1979)
[19]T. B. Jones, "Electromechanics of particles," Cambridge University Press, (1995).
[20]Han, S. I., Joo, Y. D., Han, K. H., "An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation," Analyst, vol. 138, no. 5, pp. 1529–37, (2013).
[21]Alazzam, A., Stiharu, I., Bhat, R., Meguerditchian, A. N., "Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis," Electrophoresis, 32(11), 1327–1336, (2011).
[22]Kretschmer, R., Fritzsche, W., "Pearl Chain Formation of Nanoparticles in Microelectrode Gaps by Dielectrophoresis," Langmuir, (12), 11797–11801, (2004).
[23]Nguyen,Tien Anh, Tiberius, Bogdan, Pliquett, Uwe, Urban, A, "An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis," Sensors and Actuators A: Physical , Vol. 241, pp.231-237, (2016).
[24]Han, K., Han, A., Frazier, A. B., "Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood," vol. 21, pp. 1907–1914, (2006).
[25]Iliescu, C., Poenar, D. P., Carp, M., Loe, F. C., "A microfluidic device for impedance spectroscopy analysis of biological samples," vol. 123, pp. 168–176, (2007).
[26]Wang, H. C., Nguyen, N. V., Lin, R. Y., Jen, C. P., "Characterizing esophageal cancerous cells at different stages using the dielectrophoretic impedance measurement method in a microchip," Sensors, 17(5), 1053., (2017).
[27]Bürgel, S. C., Escobedo, C., Haandbæk, N., Hierlemann, A., " Chemical On-chip electroporation and impedance spectroscopy of single-cells," Sensors and Actuators B : Chemical, vol. 210, pp. 82–90, (2015).
[28]El, C. Schmitz, göbbels, K. Bui, Bräunig, P., dechent, W. Jahnen., Schnakenberg, U., "Electrical impedance spectroscopy of single cells in hydrodynamic traps," Sensors and Actuators B : Chemical, vol. 248, pp. 419–429, (2017).
[29]Y.Chen et al., " Chemical Short communication CMOS high density electrical impedance biosensor array for tumor cell detection," Sensors and Actuators B: Chemical, vol. 173, pp. 903–907, (2012).
[30]F.Han et al., "Fast Electrical Lysis of Cells for Capillary Electrophoresis," vol. 75, pp. 3688–3696, (2003).
[31]Mernier, G., Hasenkamp, W., Piacentini, N., Renaud, P., "Chemical Multiple-frequency impedance measurements in continuous flow for automated evaluation of yeast cell lysis," Sensors and Actuators B: Chemical, vol. 170, pp. 2–6, (2012).
[32]Tu, W., Dong, Y., Lei, J., Ju, H., "Using Porphyrin-Functionalized TiO2 Nanoparticles," October, 82(20), 8711–8716, (2010).
[33]Zhao, X., Zhou, S., Shen, Q., Jiang, L. P., Zhu, J. J., "Fabrication of glutathione photoelectrochemical biosensor using graphene-CdS nanocomposites," The Analyst 137, 3697-3703 (2012).
[34]Li, J., Li, H., Xue, Y., Fang, H., Wang, W., "Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing," Sensors and Actuators B: Chemical, vol. 191, 619–624., (2014).
[35]Kang, Z., Gu, Y., Yan, X., Bai, Z., Liu, Y., Liu, S., Zhang, Y., "Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application," Biosensors and Bioelectronics, 64, 499–504. (2014).
[36] Hammond, C. L., Lee, T. K., Ballatori, N., "Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes," J. Hepatol. 34(6), 946–954, (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top