|
參考文獻 [1]Heaith Promotion Administration,Ministry of Health and Welfare, “R.O.C.,Cancer Registration Report at: https://www.hpa.gov.tw/Home/Index.aspx” [2]Chuang, C. H., Wei, C. H., Hsu, Y. M., Huang, H. S., Hsiao, F. Bin., "Impedance sensing of bladder cancer cells based on a single-cell-based DEP microchip," Proceedings of IEEE Sensors, 943–947 (2009). [3]Hasan, M. R., Hassan, N., Khan, R., Kim, Y. T., Iqbal, S. M., "Classification of cancer cells using computational analysis of dynamic morphology," Computer Methods and Programs in Biomedicine, 156, 105–112 (2018). [4]Clark, L. C., Lyons, C., "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Annals of the New York Academy of Sciences, 102(1), 29–45 (1962). [5]Ishikawa, F. N., "A Calibration Method for Nanowire," ACS Nano 3, 3969–3976 (2009). [6]Bakker, P. B. E., Bakker, E., "Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General," American Chemical Society 98, 593-1687 (1998). [7]Wang, J., Kawde, A. N., Jan, M. R., "Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization," Biosensors & bioelectronics 20, 995-1000 (2004). [8]Yan, M.; Ramström, O. Molecularly Imprinted Materials : Science and Technology; Marcel Dekker (2005). [9]Kenneth S. Cole, Howard J. Curtis, "Electric impedance of single marine eggs," The Journal of General Physiology. 591–599 (1938). [10]Coulter, W. H, "High speed automatic blood cell counter and cell size analyzer," Proc Natl Electron Conf. Chicago: National Electronics Conference, Inc.; 1957; pp 1034–1040 (1956) [11]R. A. Hoffman, W. B. Britt, J. Histochem, "Flow-system measurement of cell impedance properties," Cytochem., 27(1), 234 (1978). [12]Keese, C. R., "Monitoring fibroblast behavior in tissue culture with an applied electric field," Proc. Nadl. Acad. Sci., 81(June), 3761–3764, (1984). [13]Graham, M. W., Shi, S. F., Ralph, D. C., Park, J., McEuen, P. L., "Photocurrent measurements of supercollision cooling in graphene," Nature Physics, 9(2), 103–108, (2013). [14]Zhao, W. W., Xu, J. J., Chen, H. Y., "Photoelectrochemical bioanalysis: The state of the art," Chemical Society Reviews, 44(3), 729–741, (2015). [15]Voccia, D., Bettazzi, F., Laschi, S., Gellini, C., Pietraperzia, G., Falciola, L., Palchetti, I., "Nanostructured Photoelectrochemical Biosensing Platform for Cancer Biomarker Detection," Procedia Technology, 27, 144–145, (2017). [16]Wu, I. C., Weng, Y. H., Lu, M. Y., Jen, C. P., Fedorov, V. E., Chen, W. C., Wang, H. C., "Nano-structure ZnO/Cu2O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection," Optics Express, 25(7), 7689, (2017). [17]Pohl, H. A., "Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields," Cambridge University Press, Cambridge, (1978) [18]Pohl, H. A, Pollock, K., Dielectrophoretic Force : A Comparison of Theory and Experiment. 133–160, (1979) [19]T. B. Jones, "Electromechanics of particles," Cambridge University Press, (1995). [20]Han, S. I., Joo, Y. D., Han, K. H., "An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation," Analyst, vol. 138, no. 5, pp. 1529–37, (2013). [21]Alazzam, A., Stiharu, I., Bhat, R., Meguerditchian, A. N., "Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis," Electrophoresis, 32(11), 1327–1336, (2011). [22]Kretschmer, R., Fritzsche, W., "Pearl Chain Formation of Nanoparticles in Microelectrode Gaps by Dielectrophoresis," Langmuir, (12), 11797–11801, (2004). [23]Nguyen,Tien Anh, Tiberius, Bogdan, Pliquett, Uwe, Urban, A, "An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis," Sensors and Actuators A: Physical , Vol. 241, pp.231-237, (2016). [24]Han, K., Han, A., Frazier, A. B., "Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood," vol. 21, pp. 1907–1914, (2006). [25]Iliescu, C., Poenar, D. P., Carp, M., Loe, F. C., "A microfluidic device for impedance spectroscopy analysis of biological samples," vol. 123, pp. 168–176, (2007). [26]Wang, H. C., Nguyen, N. V., Lin, R. Y., Jen, C. P., "Characterizing esophageal cancerous cells at different stages using the dielectrophoretic impedance measurement method in a microchip," Sensors, 17(5), 1053., (2017). [27]Bürgel, S. C., Escobedo, C., Haandbæk, N., Hierlemann, A., " Chemical On-chip electroporation and impedance spectroscopy of single-cells," Sensors and Actuators B : Chemical, vol. 210, pp. 82–90, (2015). [28]El, C. Schmitz, göbbels, K. Bui, Bräunig, P., dechent, W. Jahnen., Schnakenberg, U., "Electrical impedance spectroscopy of single cells in hydrodynamic traps," Sensors and Actuators B : Chemical, vol. 248, pp. 419–429, (2017). [29]Y.Chen et al., " Chemical Short communication CMOS high density electrical impedance biosensor array for tumor cell detection," Sensors and Actuators B: Chemical, vol. 173, pp. 903–907, (2012). [30]F.Han et al., "Fast Electrical Lysis of Cells for Capillary Electrophoresis," vol. 75, pp. 3688–3696, (2003). [31]Mernier, G., Hasenkamp, W., Piacentini, N., Renaud, P., "Chemical Multiple-frequency impedance measurements in continuous flow for automated evaluation of yeast cell lysis," Sensors and Actuators B: Chemical, vol. 170, pp. 2–6, (2012). [32]Tu, W., Dong, Y., Lei, J., Ju, H., "Using Porphyrin-Functionalized TiO2 Nanoparticles," October, 82(20), 8711–8716, (2010). [33]Zhao, X., Zhou, S., Shen, Q., Jiang, L. P., Zhu, J. J., "Fabrication of glutathione photoelectrochemical biosensor using graphene-CdS nanocomposites," The Analyst 137, 3697-3703 (2012). [34]Li, J., Li, H., Xue, Y., Fang, H., Wang, W., "Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing," Sensors and Actuators B: Chemical, vol. 191, 619–624., (2014). [35]Kang, Z., Gu, Y., Yan, X., Bai, Z., Liu, Y., Liu, S., Zhang, Y., "Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application," Biosensors and Bioelectronics, 64, 499–504. (2014). [36] Hammond, C. L., Lee, T. K., Ballatori, N., "Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes," J. Hepatol. 34(6), 946–954, (2001).
|