|
[1]B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, and A.Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147–150, 2011. [2]K. F.Mak, C.Lee, J.Hone, J.Shan, and T. F.Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, pp. 2–5, 2010. [3]C.Ataca, H.Şahin, and S.Ciraci., “Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure.pdf,” J. Phys. Chem. C, vol. 116, p. 8983−8999, 2012. [4]Wu, W. et al., “High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains,” Appl. Phys. Lett. 102, 142106, 2013. [5]M. Sup Choi et al., “Controlled Charge Trapping by Molybdenum Disulphide and Graphene in Ultrathin Heterostructured Memory Devices, ” Nature Communications, vol. 4,p. 1624, Mar.2013. [6]C.-H. Lee et al., “Atomically Thin p-n Junctions with Van Der Waals Heterointerfaces,” Nature Nanotechnology, vol. 9, no. 9, pp.676-681, Aug. 2014. [7]44 Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M.; Chen, P.; Wang, S.; Shi, D.; Sun, Q.; Zhang, G., “Highly Sensitive MoS2 Humidity Sensors Array for Noncontact Sensation,” Adv. Mater.2017, 29, 1702076, 10.1002/adma.201702076 [8]Sarkar, D. et al., “MoS2 field-effect transistor for next-generation label-free biosensors,” ACS Nano 8, 3992–4003, 2014. [9]Y. J. Park et al., “All MoS2 based large area, skin-attachable active-matrix tactile sensor,” ACS Nano, vol. 13, no. 3, pp. 3023–3030, 2019. [10]Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, et al., “ Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature, 546:270-273, 2017. [11]Geim AK, Novoselov KS., “ The rise of graphene,” Nat. Mater. 2007;6:183-191. [12]Son, Y.; Wang, Q. H.; Paulson, J. A.; Shih, C. J.; Rajan, A. G.; Tvrdy, K.; Kim, S.; Alfeeli, B.; Braatz, R. D.; Strano, M. S., “ Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force microscopic imaging,” ACS Nano 2015, 9, 2843–2855. [13]C.Lee, H.Yan, L. E.Brus, T. F.Heinz, J.Hone, andS.Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2,” ACS Nano, vol. 4, no. 5, pp. 2695–2700, 2010. [14]H.Li et al., “From bulk to monolayer MoS2: Evolution of Raman scattering,” Adv. Funct. Mater., vol. 22, no. 7, pp. 1385–1390, 2012. [15]Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, et al. “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe, ” ACS Nano 2014;8:1263-1272. [16]G.Ye et al., “Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction,” Nano Lett., vol. 16, no. 2, pp. 1097–1103, 2016. [17]A. Zobel, A. Boson, P.M. Wilson, et al., “Chemical vapour deposition and characterization of uniform bilayer and trilayer MoS2 crystals,” J. Mater. Chem. C, 4 (47) (2016) [18]Serna, M. I.; Yoo, S. H.; Moreno, S.; Xi, Y.; Oviedo, J. P.; Choi, H.; Alshareef, H. N.; Kim, M. J.; Minary-Jolandan, M.; Quevedo-Lopez, M. A., “Large-Area Deposition of MoS2 by Pulsed Laser Deposition with in Situ Thickness Control ” ACS Nano 2016, 10, 6054– 6061. [19]Kuang-I Lin, Yen-Hung Ho, Shu-Bai Liu, Jian-Jhih Ciou, Bo-Ting Huang, Christopher Chen, Han-Ching Chang, Chien-Liang Tu, and Chang-Hsiao Chen, “Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers,” Nano Letters, 10.1021/acs.nanolett.7b04006 (2018). [20]H.Li et al., “Optical identification of single- and few-layer MoS2 sheets,” Small, vol. 8, no. 5, pp. 682–686, 2012. [21]H.Li et al., “Rapid and Reliable Thickness Identi fi cation of Two-Dimensional Nanosheets Using Optical Microscopy,” ACS Nano, no. Xx, pp. 10344–10353, 2013. [22]Y. Y.Wang et al., “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology, vol. 23, no. 49, p. 495713, 2012. [23]Y. Li, N. Dong, S. Zhang, K. Wang, L. Zhang, and J. Wang, “Optical identification of layered MoS2 via the characteristic matrix method,” Nanoscale 8(2), 1210–1215 (2016). [24]Lin, X. et al, “Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy,” Nano Research 11, 6316–6324 (2018). [25]G. A. Wilkin, X. Huang, “K-means clustering algorithms: Implementation and comparison,” Proc. Int. Multi-Symp. Comput. Comput. Sci., pp. 133-136, 2007-Aug. [26]Y. Li, Y. Kong et al., “Rapid identification of two-dimensional materials via machine learning assisted optic microscopy,” J. Materiomics (2019). [27]Simone Arrigoni, Giovanni Turra and Alberto Signoroni, “ Hyperspectral image analysis for rapid and accurate discrimination of bacterial infections: A benchmark study,” Computers in Biology and Medicine, 88, (60), (2017). [28]G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968. [29]B. Krishnapuram, L. Carin, M. A. T. Figueiredo, A. J. Hartemink, “Sparse multinomial logistic regression: Fast algorithms and generalization bounds,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 957-968, Jun. 2005. [30]Q. Wang, Z. Meng, X. Li, “Locality adaptive discriminant analysis for spectral–spatial classification of hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2077-2081, Nov. 2017. [31]Q. Wang, J. Lin, Y. Yuan, “Salient band selection for hyperspectral image classification via manifold ranking,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1279-1289, Jun. 2016. [32]Y. Yuan, J. Lin, Q. Wang, “Dual-clustering-based hyperspectral band selection by contextual analysis,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1431-1445, Mar. 2016. [33]H.Li et al., “Optical identification of single- and few-layer MoS2 sheets,” Small, vol. 8, no. 5, pp. 682–686, 2012. [34]H.Li, J.Wu, Z.Yin, and H.Zhang, “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets,” ACC. Chem. Res., vol. 47, no. 4, pp. 1067–1075, 2014. [35]Y.Zhao et al., “Interlayer Breathing and Shear Modes in Few-Trilayer MoS2 and WSe2,” Nano Lett., vol. 13, no. 3, pp. 1007–1015, 2013. [36]J.Jeon et al., “Layer-controlled CVD growth of large-area two-dimensional MoS2 films,” Nanoscale, vol. 7, no. 5, pp. 1688–1695, 2015. [37]D.Dumcenco et al., “Large-Area Epitaxial Monolayer MoS2,” ACS Nano, vol. 9, no. 4, pp. 4611–4620, 2015. [38]Lee, Y-H. et al., “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24, 2320–2325 (2012). [39]Najmaei, S. et al., “Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers,” Nature Mater. 12, 754–759 (2013). [40]A. M.van derZande et al., “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater., vol. 12, no. 6, pp. 554–561, 2013. [41]G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, and M.Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett., vol. 11, no. 12, pp. 5111–5116, 2011. [42]P. J.Mulhern, “Lithium intercalation in crystalline LixMoS2,” Can. J. Phys., vol. 67, p. 1049, 1989. [43]A. N.Enyashin and G.Seifert, “Density-functional study of LixMoS2 intercalates (0⩽x⩽1),” Comput. Theor. Chem., vol. 999, no. 343, pp. 13–20, 2012. [44]Kang, J.; Liu, W.; Banerjee, K., “High-Performance MoS2 Transistors with Low-Resistance Molybdenum Contacts,” Appl. Phys.Lett. 2014, 104, 093106. [45]Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A., “ Single-layer MoS2 transistors,” Nature Nanotechnol. 6, 147–150 (2011) [46]Kufer, D.; Konstantatos, G. Highly Sensitive, “Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed,” Nano Lett. 2015, 15, 7307−7313. [47]Cheng, R.; Li, D.; Zhou, H.; Wang, C.; Yin, A.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X., “Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p-n Diodes,” Nano Lett. 2014, 14, 5590−5597. [48]Wang, T.; Zhu, R.; Zhuo, J.; Zhu, Z.; Shao, Y.; Li, M., “ Direct Detection of DNA Below ppb Level Based on Thionin-Functionalized Layered MoS2 Electrochemical Sensors,” Anal. Chem. 2014, 86, 12064−12069 [49]Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L., “ The valley Hall effect in MoS2 transistors,” Science 344, 1489–1492 (2014). [50]Ji, Q.; Zhang, Y.; Zhang, Y.; Liu, Z. , “Chemical Vapour Deposition of Group-VIB Metal Dichalcogenide Monolayers: Engineered Substrates from Amorphous to Single Crystalline Chem,” Soc. Rev. 2015, 44, 2587– 2602 [51]Zhou, D.; Shu, H.; Hu, C.; Jiang, L.; Liang, P.; Chen, X., “Unveiling the Growth Mechanism of MoS2 with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation,” Cryst. Growth Des. 2018, 18, 1012– 1019. [52]Zhu D, Shu H, Jiang F, Lv D, Asokan V, Omar O, Yuan J, Zhang Z and Jin C., “Capture the growth kinetics of CVD growth of two-dimensional MoS2,” NPG 2D Mater. Appl. 18(2017). [53]Wang, S. et al, “Shape Evolution of Monolayer MoS2Crystals Grown by Chemical Vapor Deposition,” Chem. Mater. 26, 6371–6379 (2014). [54]Wang, L.; Chen, F.; Ji, X., “Shape Consistency of MoS2 Flakes Grown Using Chemical Vapor Deposition,” Appl. Phys. Express 2017, 10, 065201 [55]Z. Wei, Q. Yunfeng, F. Wei, C. Jingxin, Y. Huihui, W. Shiwei, J. Dechang, Z. Yu, H. PingAn., “Controlled growth of six-point stars MoS2 by chemical vapor deposition and its shape evolution mechanism,” Nanotechnology, 28 (2017), Article 395601 [56]Geng,D. et al., “Controlled growth of single-crystal twelve-pointed graphene grains on a liquid Cu surface,” Adv Mater. 26 6423–9(2014) [57]H. E. Lin, P. A. N. Quan, D. I. Wei, and L. I. Yuan, “Research Advance on Target Detection for Hyperspectral Imagery,” Chinese J. Electron., vol. 37, no. 9, pp. 2016–2024, 2009. [58] P. Shippert, “Introduction to hyperspectral image analysis,” Online J. Sp. Commun., p. 3, 2003. [59] T. E. Bell, “Remote sensing,” IEEE Spectr., vol. 32, no. 3, pp. 24–31, 1995. [60] Zhang, X., Chen, S., Xu, F. Combining Raman Imaging and Multivariate Analysis to Visualize Lignin, Cellulose, and Hemicellulose in the Plant Cell Wall. J. Vis. Exp. (124), e55910, doi:10.3791/55910 (2017). [61]P. Shippert, “Introduction to hyperspectral image analysis,” Online J. Sp. Commun., 2003. [62]H.Zhang et al., “Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence,” Sci. Rep., vol. 5, no. 1, p. 8440, 2015. [63] Zhang, H.; Ma, Y. G.; Wan, Y.; Rong, X.; Xie, Z. A.; Wang, W.; Dai, L., “Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence,” Sci. Rep. 2015, 5, 8440. [64] Palik, E. D., “Handbook of Optical Constants of Solids,” Elsevier: Amsterdam, 1997. [65] Benameur MM, Radisavljevic B, Heron JS, Sahoo S, Berger H, Kis A., “Visibility of dichalcogenide nanolayers,” Nanotechnology 2011;22:125706. [66] Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, et al., “ Making graphene visible,” Appl. Phys. Lett, pp. 91, 2007. [67] A. Castellanos-Gomez, J. Quereda, H. P. van der Meulen, N. Agraït and G. Rubio-Bollinger., “Spatially resolved optical absorption spectroscopy of single-and few-layer MoS2 by hyperspectral imaging,” Nanotechnology, 2016, 27, 115705 [68] P. Louridas, C. Ebert, "Machine learning", IEEE Softw., vol. 33, no. 5, pp. 110-115, Sep./Oct. 2016. [69] Y. LeCun, Y. Bengio, G. Hinton, "Deep learning", Nature, vol. 521, pp. 436-444, May 2015. [70] T. Poggio, S. Smale., "The mathematics of learning: dealing with data" Not Am Math Soc, 50 (5) (2003), pp. 537-544 [71] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, C., "Wang Machine learning and deep learning methods for cybersecurity", IEEE Access, pp. 35365-35381, 6 (2018) [72] Kotsiantis SB., "Decision trees: a recent overview", Artif Intell Rev. 2013;39(June 2011):261–83. [73] W. Li, J. Du, and B. Yi, “Study on classification for vegetation spectral feature extraction method based on decision tree algorithm,” inInternational Conference on Image Analysis and Signal Processing (IEEE, 2011), pp. 665–669. [74] Ghose, M. K.; Pradha R.; Ghose, S. S., “Decision Tree Classification Of Remotely Sensed Satellite Data Using Spectral Separability Matrix,” International Journal of Advanced Computer Science and Applications, Vol. 1, No.5, pp. 93-101, 2010. [75] Z. Lin, Y. Chen, X. Zhao, G. Wang, "Spectral-spatial classification of hyperspectral image using autoencoders", Proc. 9th Int. Conf. Inf. Commun. Signal Process. (ICICS), pp. 1-5, Dec. 2013. [76] Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi., “Deep feature extraction and classification of hyperspectral images based on convolutional neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016. [77] Y. Li, H. Zhang, Q. Shen., “Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network,” Remote Sens., vol. 18, no. 7, pp. 1527-1554, 2006. [78] M. Anderson, R. Motta, and S. C. M. Stokes, “A Standard Default Color Space for the Internet - sRGB,” Color Imaging Conf., vol. 8, pp. 238–245, 1996. [79] D. Đorđević, A. Hladnik, and A. Javoršek, “Performance Of Five Chromatic Adaptation Transforms Using Large Number Of Color Patches,” Acta Graph. Znan. časopis …, vol. 20, pp. 9–19, 2010. [80] T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc., vol. 33, no. 3, pp. 73–134, 1931. [81] Hotelling, Harold, “The Generalization of Student's Ratio,” Ann. Math. Statist. no. 3, 360-378, Feb. 1931. [82] P. Evennett, “Kohler illumination: a simple interpretation,” Proc. R. Microsc. Soc. 28, 10–13, 1994. [83] R. K.Attota, “Step beyond Kohler illumination analysis for far-field quantitative imaging: angular illumination asymmetry (ANILAS) maps,” Opt. Express24(20), 22616–22627.OPEXFF1094-4087, 2016. [84] Hsiang-Chen Wang, Shih-Wei Huang, Jhe-Ming Yang, Guan-Huang Wu, Ya-Ping Hsieh, Shih-Wei Feng, Min Kai Lee and Chie-Tong Kuo, “Large-area few-layered graphene film determination by multispectral imaging microscopy,” Nanoscale, 7, 9033 - 9039, 2015.
|