(3.236.228.250) 您好!臺灣時間:2021/04/17 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃露葵
研究生(外文):HUANG,LU-KUEI
論文名稱:探討臺灣影響登革熱監測系統 導入及使用意圖之實證研究
論文名稱(外文):An Empirical Study on Intentional Behavior for Implementing Dengue Fever Surveillance System In Taiwan
指導教授:黃維民黃維民引用關係
指導教授(外文):HUANG,WEI-MIN
口試委員:陳昭宏阮金聲
口試委員(外文):CHENG,JAO-HONGROAN,JIN-HENG
口試日期:2018-06-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理系醫療資訊管理研究所
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:109
中文關鍵詞:登革熱地理資訊系統解構式計畫行為理論使用意圖
外文關鍵詞:Dengue FeverGeographic Information SystemDecomposed Theory of Planed BehaviorUse Intention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
登革熱近年來一直是影響臺灣公共衛生的主要傳染病之一,一旦發生疫情,對民眾、防疫單位及地方政府造成健康、經濟及觀光的損失。衛生單位莫不投注大量人力及物力防範,而面對登革熱的威脅,各項衛生資訊的有效整合,從風險管理、疫情調查到防疫區規劃,對疫情的預防與控制相當重要,平時可以藉此系統做好社區的風險管理,戰時則可以作為防疫規劃的一項利器。衛生福利部疾病管制署對於病媒蚊調查與病例通報體系資訊系統早已建置運作,若能結合地理資訊系統將有助於展示登革熱相關資訊的空間型態,亦有助於彙整相關資料,進行環境因子的空間分析與預測。因此,本研究以防疫人員的觀點,探討影響公共衛生單位導入登革熱監測系統及防疫人員使用意圖之影響因素。

本研究以「解構式計畫行為理論」為基礎建立研究概念架構,配合實證調查研究,以全國22縣市衛生局疾病管制科之科(處)長及登革熱業務主辦人員、各縣市衛生所主任及防疫業務主辦人員共782名為研究對象,進行影響登革熱監測系統導入及使用意圖之研究調查,共回收有效問卷計388份。資料分析結果顯示:知覺有用性、知覺易用性、主管的態度、同儕影響、團隊成員互動、任務特性、系統操作能力、系統操作有利條件、態度、主觀規範及知覺行為控制均對使用意圖有顯著影響。本研究結果將有助於釐清與支持公共衛生單位導入系統並能使單位相關人員有意願使用之影響因素,並作為後續研究者進行相關研究之參考。

Dengue Fever has been one of the major infectious diseases affecting Taiwan’s public health in recent years. The disease outbreaks will cause the losses in health, economy and tourism to the public, epidemic prevention units and the local governments. The health units have invested lots of manpower and material resources to prevent the occurrence of diseases. In face of the threat of Dengue Fever, the effective integration of various health information, ranging from risk management and outbreak investigation to the planning of epidemic prevention areas, is quite important to prevent and control the outbreaks. On normal days, this system can be used to do the risk management well in the residence community; during epidemic breakout, it can be used as a method to plan the epidemic prevention. Centers for Disease Control, Ministry of Health and Welfare has already established and operated the information system of vector mosquito investigation and case report system. In combination with Geographic Information System, it is helpful to display the spatial pattern related to the information of Dengue Fever and summarize the relevant data to conduct the spatial analysis and forecast of environmental factors. Based on the opinions of epidemic prevention specialists, this study discussed the factors affecting the public health unit’s import of Dengue Fever Surveillance System and the use intention of epidemic prevention personnel.

With a total of 782 persons as the subjects (including the staff of the disease control divisions of health departments of local governments in 22 counties and cities in Taiwan, the personnel in charge of Dengue Fever services, directors of health centers and personnel in charge of epidemic prevention services in various counties and cities), this research established the research conceptual framework on the basis of “Decomposed Theory of Planed Behavior” and combined the empirical investigation and study to carry out the investigation on the factors affecting the import of Dengue Fever Surveillance System and use intention. As a result, totally 388 valid questionnaires were retrieved. According to the data analysis results, perceived usefulness, perceived ease of use, supervisors’ attitude, peer influence, team member interaction, task characteristics, system operating ability, advantageous condition in system operation, attitude, subjective norms and perceived behavior control all have a significant effect on the use intention. The result of this study can help to support the public health unit’s import of the system and clarify the factors affecting the related unit personnel’s use intention, which can be used by the subsequent researchers as the reference to conduct the related studies.

目錄I
圖目錄III
表目錄IV
名詞解釋 VI
第一章 緒論 1
第一節 研究背景動機1
第二節 研究問題與目的7
第二章 文獻探討10
第一節 全球暖化對公共衛生-斑蚊傳播傳染疾病之影響11
第二節 登革熱監測系統結合GIS對公共衛生之貢獻18
第三節 科技接受相關理論27
第三章 研究方法38
第一節 研究架構38
第二節 研究假說 40
第三節 研究變數之操作型定義與衡量57
第四節 研究設計58
第四章 資料分析61
第一節 基本資料分析61
第二節 研究問項敘述性統計分析65
第三節 信度與效度分析67
第四節 基本假設檢定75
第五節 結構模型分析76
第五章 結論與建議83
第一節 研究結論與討論83
第二節 研究貢獻87
第三節 研究限制88
第四節 未來研究方向89
參考文獻 90
附錄:研究問卷107

中文文獻:
王小棋、李佳琳、劉定萍、傅宗襁(民105)。東南亞國家登革熱疫情流行趨與分析疫情報導。疫情報導,11,236-237。
中央氣象局(民103)。全球氣候的變化與變遷。上網日期:民國106年10月11號,取自:http://www.cwb.gov.tw/V7/climate/climate_info/climate_change/change_5.html
王明杰、孫思源(民102)。影響餐飲業使用無線點餐系統之因素-結合計畫行理論以及知覺風險理論。商業現代化學刊,7(1),277-306。
王淑鶯等(民105)。登革熱的台灣經驗-從流行病學及臨床到基礎科學的新視野(初版)。臺北市:科技部台灣重要新興感染症研究計畫辦公室。
吳定澄、許友貞、李忠潘(民104)。聖嬰-南方振盪現象對台灣氣溫及雨量之影響。海洋工程學刊,15(1),57-65。
池文海、林憬、王智永、張明暐(民100)。使用者採用GPS科技產品行為意圖之研究。創新與管理,8(2),29-60。
吳玫瑩、江珮姍(民103)。以分解式計劃行為理論探討台灣民眾對數位電視的使用意圖。Journal of Data Analysis,9(1),147-168。
李慶長、張銀益、黃柏翔(民104)。以計畫行為理論探討穿戴型裝置的使用意圖-以 Google 眼鏡為例。Electronic Commerce Studies,13(3),315-334。
林政宏(民96)。台灣地區登革熱擴散之空間分析。臺灣大學地理環境資源學研究所碩士論文。
林柏丞、郭巧玲、葉耀鮮、楊毓仁、魏敬玲、江麗香、詹大千(民106)。運用開放式地理資訊架構於登革熱防疫機制之研究。醫療資訊雜誌,26(3),1-11。
周君倚、陸洛(民103)。以科技接受模式探討數位學習系統使用態度-以成長需求為調節變項。資訊管理學報,21(1),83-106。
尚修國(民102)。以科技接受模式與創新擴散理論為基礎評估影響行動即時通訊軟體使用意願的關鍵因素。中原大學企業管理研究所碩士論文。
高淑珍、陳華慶、吳建興(民100)。VoIP使用意向之研究-以金門縣公務機關為例。中華管理學報,12(2),25-46。
梁定澎(民101)。資訊管理理論(初版)。新北市:前程文化。
馬春媛(民98)。影響企業員工使用數位學習系統意圖之研究-結合科技接受模型與主觀規範因素。國立中央大學企業管理研究所碩士論文。
張勝雄、張書芸(民106)。從衆行為理論與科技接受模式探討使用者對行動裝置遊戲 App 下載意圖:以遊戲開發團隊之國家文化距離為干擾變數。商略學報,9(1),1-16。
黃雲龍、葉允棋、歐展嘉(民101)。Web2.0新興教學科技的使用行為研究與滿意度之研究。休閒研究,4(2),45-68。
黃聖峯、鄒仁淳、林娟娟(民103)。社群網站之使用行為研究-以Facebook 為例。Electronic Commerce Studies,12(2),201-234。
楊楠華、李宏安、方慧臻、陳慧秋(民104)。以科技接受模式探討國中生線上學習使用意願之研究-以台中市為例。管理資訊計算,4(1),132-141。
溫在弘、金傳春、蕭朱杏、嚴漢偉、范毅軍、蘇明道(民91)。地理資訊系統應用於傳染流行病的疫情偵測,數據分析與速效控制。臺灣公共衛生雜誌,21(6),449-456。
董和昇(民90)。網站使用者資訊獲取策略之研究。國立中山大學資訊管理學系博士論文。
董峰呈(民97)。利用新混合模型探討影響消費者使用網路銀行行為意圖之實證研究。國立成功大學企業管理學系碩博士班論文。
董信煌、陸曉曦(民106)。雲端電子病歷使用意圖之探討。Electronic Commerce Studies,15(2),167-208。
衛生福利部疾病管制署(民106)。登革熱/屈公病防治工作指引(10版)。臺北市:作者。
衛生福利部疾病管制署(民106)。全球資訊網防疫專區─疾病介紹─登革熱。上網日期:民國106年10月1日,取自:http://www.cdc.gov.tw/professional/ThemaNet.aspx?did=641&treeid=6FD88FC9BF76E125&nowtreeid=6FD88FC9BF76E125。
劉英姿、方啟泰、顏哲傑(民104)。2003-2-2013台灣地區登革熱併發登革出血熱為因子分析。台灣公共衛生雜誌,34,437-446。
陳明珠、林清壽、廖崇凱(民104)。中高齡者購買商業型長期照護保險行為意向之探究。福祉科技與服務管理學刊,3(2),189-208。
陳雲蘭(民104)。全球與台灣的氣候變遷。科學研習月刊,54(5),6-9。
陳麗惠(民105)成年在職人士行動學習行為意向之研究。國立高雄師範大學人力與知識管理研究所碩士論文。
陳建仁(民88)。流行病學-理論與方法(初版)。台北市:聯經。
陳素芬、江彥逸、王惠玄、郭惠敏、林俊逸(民101)。臨床護理人員數位學習接受度認知之相關因素探討。醫療資訊雜誌,21(4),53-70。
蔡易霖(民105)。乘客於機艙內使用行動裝置之研究:解構式計畫行為理論之應用。國立臺灣師範大學運動休閒與餐旅管理研究所碩士論文。
鄒惠貞、葉信伶、江威誼、江博煌(民104)。登革熱疫情的空間趨勢分析。醫療資訊雜誌,24(4),39-48。
蘇慧貞、林乾坤、陳培詩(民97)。氣候變遷對公共衛生的衝擊。科學發展,421,15-17。
簡珮珊(民97)。我國高中職圖書館主任參與合作組織之行為意向研究。國立臺灣師範大學圖書資訊學研究所碩士論文。
魏婷玉(民105)。探討智慧化社區管理系統之使用影響因素-以北北基居民為例。淡江大學管理科學學系碩士論文。
鄭志明(民103)。應用城市生態土地績效評量模式之行為意向研究-TPB與TAM雙模式檢證。中山大學公共事務管理研究所博士論文。
蕭信宏(民104)。登革熱之病媒防治策略。台灣醫學,19(6),619-624。
闕于能、王欽賢、林建生、王仁德、 蔡懷德、蔡遠鵬等人(民106)。公共場所對登革熱疫情初期的影響:以 2015年臺南市西門町跳蚤市場登革熱群聚事件為例。疫情報導,33(10),178-183。
英文文獻:
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior . In Action control . Springer Berlin Heidelberg. 11-39.
Ajzen, I. (1987). Attitudes, traits, and actions: Dispositional prediction of behavior in personality and social psychology. Advances in experimental social psychology, 20, 60-63.
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
Ajzen, I. (2002). Perceived behavioral control, self‐efficacy, locus of control, and the theory of planned behavior. Journal of applied social psychology, 32(4), 665-683.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. Prentice-Hall,Englewood Cliffs,N.J.
Alharbi, S., & Drew, S. (2014). Using the technology acceptance model in understanding academics’ behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications, 5(1), 143-155.
Ali, M., Wagatsuma, Y., Emch, M., & Breiman, R. F. (2003). Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes albopictus in an urban outbreak. The American journal of tropical medicine and hygiene, 69(6), 634-640.
Al-Jabri, I. M., & Sohail, M. S. (2012). Mobile banking adoption: Application of diffusion of innovation theory.
Bandura, A. (1977). Self-efficacy:Toward a unifying theory of behavioral change. Psychological review, 84(2), 191-215.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American psychologist, 37(2), 122.
Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of social and clinical psychology, 4(3), 359-373.
Bass, B. M., & Vaughan, J. A. (1965). The psychology of learning for managers. American Foundation for Management Research.
Beebe, N. W., Cooper, R. D., Mottram, P., & Sweeney, A. W. (2009). Australia's dengue risk driven by human adaptation to climate change. PLoS neglected tropical diseases, 3(5),1-9.
Benne, K. D., & Sheats, P. (1948). Functional roles of group members. Journal of social issues, 4(2), 41-49.
Berger, I. (1993). A framework for understanding the relationship between environmental attitudes and consumer behavior. Marketing theory and application, 4(1993), 157-163.
Bhattacherjee, A. (2000). Acceptance of e-commerce services: the case of electronic brokerages. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and humans, 30(4), 411-420.
Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., ... & Myers, M.F.(2013). The global distribution and burden of dengue. Nature, 496(7446),504-507.
Blagrove, M. S., Caminade, C., Waldmann, E., Sutton, E. R., Wardeh, M., & Baylis, M. (2017). Co-occurrence of viruses and mosquitoes at the vectors’ optimal climate range: An underestimated risk to temperate regions?. PLoS neglected tropical diseases, 11(6), 1-17.
Blake, R. H., & Kyper, E. S. (2013). An investigation of the intention to share media files over peer-to-peer networks. Behaviour & Information Technology, 32(4), 410-422.
Castro, M. C., Wilson, M. E., & Bloom, D. E. (2017). Disease and economic burdens of dengue. The Lancet Infectious Diseases, 15(1),70-78.
Champney, L.(1995). Introduction to quantitative political science. Harper Collins College Publishers.
Chan, T. C., Hu, T. H., & Hwang, J. S. (2015). Daily forecast of dengue fever incidents for urban villages in a city. International journal of health geographics, 14(1), 9.
Chang, I. C., Chou, P. C., Yeh, R. K. J., & Tseng, H. T. (2016). Factors influencing Chinese tourists’ intentions to use the Taiwan Medical Travel App. Telematics and Informatics, 33(2), 401-409.
Chang, A. Y., Parrales, M. E., Jimenez, J., Sobieszczyk, M. E., Hammer, S. M., Copenhaver, D. J., & Kulkarni, R. P. (2009). Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries. International journal of health geographics, 8(1), 49.
Chen, C. C., Teng, Y. C., Lin, B. C., Fan, I. C., & Chan, T. C. (2016). Online platform for applying space–time scan statistics for prospectively detecting emerging hot spots of dengue fever. International journal of health geographics, 15(1), 43.
Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An investigation of mobile learning readiness in higher education based on the theory of planned behavior. Computers & Education, 59(3), 1054-1064.
Cheung, R., & Vogel, D. (2013). Predicting user acceptance of collaborative echnologies: An extension of the technology acceptance model for e-learning. Computers & Education, 63, 160-175.
Chin, W., & Newsted, P. (1999). Structural Equation Modeling Analysis with Small
Samples Using Partial Least Squares. In Rich Hoyle (Ed.), Statistical Strategies
for Small Sample Research, Sage Publications, 307-341.
Chiu, Y. K. (2014). Comparsion on the application models of techonology -computer-based tutorial setting is taken for example. Green Communications and Networks 54,151-158.
Chu, H. J., Chan, T. C., & Jao, F. J. (2013). GIS-aided planning of insecticide spraying to control dengue transmission. International journal of health geographics, 12(1), 42.
Chu, T. H., & Chen, Y. Y. (2016). With Good We Become Good: Understanding e-learning adoption by theory of planned behavior and group influences. Computers & Education, 92, 37-52.
Clark, N. (1994). Team building: A practical guide for trainers. New York: McGraw-Hill.
Claudio, D., Velázquez, M. A., Bravo-Llerena, W., Okudan, G. E., & Freivalds, A. (2015). Perceived usefulness and ease of use of wearable sensor-based systems in emergency departments. IIE Transactions on Occupational Ergonomics and Human Factors, 3(3-4), 177-187.
Cooper, R. B., & Zmud, R. W. (1990). Information technology implementation research: A technological diffusion approach. Management Science, 36(2), 123-139.
Daft, R. L., Lengel, R. H., & Trevino, L. K. (1987). Message equivocality, media selection, and manager performance: Implications for information systems. MIS quarterly, 355-366.
Dai, Z. (2015). Factors affecting university students' intention to adopt e-learning systems: a case study in Jiujiang University. International Journal of Networking and Virtual Organisations, 15(2-3), 102-119.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
De Luis, M. M., Cruz, A. J. A., Arcia, A. V. U., & Márquez, C. Y. (2015). Green Information Technology influence on car owners’ behavior: Considerations for their operative support in collaborative eLearning and social networks. Computers in Human Behavior,51, 792-802.
Delmelle, E., Hagenlocher, M.,Kienberger,S., & Casas,I.(2016). A spatial model of socioeconomic and environmental determinants of dengue fever in Cali,Colombia. Acta tropica,164, 169-176.
Dieng, H., Saifur, R. G., Hassan, A. A., Salmah, M. C., Boots, M., Satho, T., ... & AbuBakar, S. (2010). Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications. PloS one, 5(7),1-9.
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & management, 36(1), 9-21.
Duncombe, J., Clements, A., Hu, W., Weinstein, P., Ritchie, S., & Espino, F. E. (2012). Geographical information systems for dengue surveillance. The American journal of tropical medicine and hygiene, 86(5), 753-755.
Eisen, L., & Lozano-Fuentes, S. (2009). Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. PLoS neglected tropical diseases, 3(4), 1-6.
Elevenmyanmar (2017). Over 9, 100 DHF cases, 55 deaths reported last year. Available at: http://www.elevenmyanmar.com/local/7259.
Elevenmyanmar (2016). Singaporean pest control firm optimistic on Myanmar. Availableat: http://www.elevenmyanmar.com/business/singaporean-pest-control-firm-optimistic-myanmar.
Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1995), Consumer Behavior, 8th ed., New York:Dryden Press.
Estallo, E. L., Ludueña-Almeida, F. F., Introini, M. V., Zaidenberg, M., & Almirón, W. R. (2015). Weather variability associated with Aedes (stegomyia) aegypti (dengue vector) oviposition dynamics in Northwestern Argentina. PloS one, 10(5),1-11.
Fishbein, M., &Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research:Addison-Wesley, Reading, MA.
Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behaviour.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement Error. Journal of marketing research, 18(1), 39-50.
Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management science, 41(12), 1827-1844.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 213-236.
Gubler, D. J. (2004). The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle?. Comparative immunology, microbiology and infectious diseases, 27(5), 319-330.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate data analysis(7th ed). New Jersey, Prentice Hall.
Hackman, J. R. (1983). A normative model of work team effectiveness. New Haven, CT: Yale University.
Hersey, P., and K.H. Blanchard. (1993) . Management of Organizational Behavior: Utilizing human resources. Englewood Cliffs, New Jersey: Prentice-Hall.
Hernández-Ávila, J. E., Rodríguez, M. H., Santos-Luna, R., Sánchez-Castañeda, V., Román-Pérez, S., Ríos-Salgado, V. H., & Salas-Sarmiento, J. A. (2013). Nation-wide, web-based, geographic information system for the integrated surveillance and control of dengue fever in Mexico. PLoS One, 8(8),1-6.
Hollingshed, A. B. (1996). Information suppression and status persistence in group decision making: The effects of communication media. Human Communication Research, 23(2), 193-219.
Hosseini, S. A., Bathaei, S. M., & Mohammadzadeh, S. (2014). Does Self-Efficacy Effect on Knowledge Sharing Intention in E-Learning System?: A Motivational Factor Analysis in Open University Malaysia (OUM). Kuwait Chapter of Arabian Journal of Business and Management Review, 3(11), 35-46.
Hsieh, P. J. (2015). Physicians’ acceptance of electronic medical records exchange: An extension of the decomposed TPB model with institutional trust and perceived risk. International journal of medical informatics, 84(1), 1-1.
Hsieh, P. J. (2015). Healthcare professionals’ use of health clouds: Integrating technology acceptance and status quo bias perspectives. International journal of medical informatics, 84(7), 512-523.
Hsu, C. Y., Fuad, A., Lazuardi, L., & Sanjaya, G. Y. (2012). GIS for dengue surveillance: Strengthening collaborations. The American journal of tropical medicine and hygiene, 87(6), 1152-1152.
Hsu, S. C., Liu, C. F., Weng, R. H., & Chen, C. J. (2013). Factors influencing nurses’ intentions toward the use of mobile electronic medical records. CIN: Computers, Informatics, Nursing, 31(3), 124-132.
Hung, S. Y., Chang, C. M., & Kuo, S. R. (2013). User acceptance of mobile e-government services: An empirical study. Government Information Quarterly, 30(1), 33-44.
Hung, S. Y., Ku, Y. C., & Chien, J. C. (2012). Understanding physicians’ aceptance of the Medline system for practicing evidence-based medicine: A decomposed TPB model. International journal of medical informatics, 81(2), 130-142.
Hung, S. Y., & Wu, H. L. (2012). Factors influencing user acceptance of web-based decision support systems. Journal of Computer Information Systems, 52(4), 70-77.
Igbaria, M., & Chakrabarti, A. (1990). Computer anxiety and attitudes towards microcomputer use. Behaviour & Information Technology, 9(3), 229-241.
Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587-605.
Karimi, J., Somers, T. M., & Gupta, Y. P.(2004). Impact of environmental uncertainty and task characteristics on user satisfaction with data. Information Systems Research, 15 (2), 175-193.
Kementerian Kesehatan Republic Indonesia(2017). Kemenkes Optimalkan PSN Cegah DBD. Available at: http://www.depkes.go.id/article/view/17061500001/kemenkes-optimalkan-psn-cegah-dbd.html.
Kim, B. G., Park, S. C., & Lee, K. J. (2007). A structural equation modeling of the Internet acceptance in Korea. Electronic Commerce Research and Applications, 6(4), 425-432.
Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., ... & Hendrickx, G. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Tropical medicine and international health, 20, 38.
Lai, V. S.(2001). Intraorganizational communication with intranet. Communications of the ACM, 44 (7), 95-100.
Lai, H. J. (2017). Examining civil servants’ decisions to use Web 2.0 tools for learning, based on the decomposed theory of planned behavior. Interactive Learning Environments, 25(3), 295-305.
Lee, C. F., Chiang, I. C., Hwang, F. M., Chi, L. K., & Lin, H. M. (2016). Using the Theory of Planned Behavior to predict pregnant women's intention to engage in regular exercise. Midwifery, 42, 80-86.
Lee, S., & Kim, B. G. (2009). Factors affecting the usage of intranet: A confirmatory study. Computers in Human Behavior ,25(1), 191-201.
Leejoeiwara, B. (2012). Modeling adoption intention of online education in Thailand using the extended decomposed theory of planned behavior (DTPB) with self-directed learning. AU Journal of Mnagement,11(2).
Liker, J. K., & Sindi, A. A. (1997). User acceptance of expert systems: a test of the theory of reasoned action. Journal of Engineering and Technology management, 14(2), 147-173.
Lin, T. C., Hsu, J. S. C., & Chen, H. C. (2013). Customer willingness to pay for online music: the role of free mentality. Journal of Electronic Commerce Research, 14(4), 315.
Liu, C. C., Huang, K. J., Huang, M. C., Lin, J. J., Wang, S. M., Liu, J. J., ... & Yeh, T. M. (2008). High case-fatality rate of adults with dengue hemorrhagic fever during an outbreak in non-endemic Taiwan: risk factors for dengue-infected elders. Am J Infect Dis, 4, 10-7.
Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A., & Rocklöv, J. (2014). Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PloS one, 9(3), 1-4.
Lucas, H. C., & Spitler, V. K. (1999). Technology use and performance: A field study of broker workstations. Decision sciences, 30(2), 291-311.
Ma, C. C., Kuo, K. M., & Alexander, J. W. (2015). A survey-based study of factors that motivate nurses to protect the privacy of electronic medical records. BMC medical informatics and decision making, 16(1), 13.
Maciel-de-Freitas, R., Avendanho, F. C., Santos, R., Sylvestre, G., Araújo, S. C., Lima, J. B. P., ... & Valle, D. (2014). Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PLoS One,9(3),4-8.
Mas-Coma, S., Valero, M. A., & Bargues, M. D. (2009). Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Veterinary parasitology, 163(4), 264-280.
Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191.
McGrath, J. E. (1984). Groups: Interaction and performance(Vol. 14). Englewood Cliffs, NJ: Prentice-Hall.
Messina, J. P., Brady, O. J., Pigott, D. M., Golding, N., Kraemer, .U.,Scott,T.W., ...& Hay,S.I. (2015). The many projected futures of dengue.Nature Reviews Microbiology, 13(4), 230-239.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and dengue transmission: evidence and implications. Environmental health perspectives, 121(11-12), 1264.
National Oceanic and Atmospheric Administration U.S.Department of Commerce (2015)。Global Climate Report - November 2015。Available at:
https://www.ncdc.noaa.gov/sotc/global/201511.
Northen, H. (1969). Psychometric theory( 3rd ed). New York: Columbia University Press.
Nunnally,J.C. (1978). Psychometric theory(2nd ed). New York: Mcgraw-Hill.
Ocampo, C. B., Mina, N. J., Carabalí, M., Alexander, N., & Osorio, L. (2014). Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. Acta tropica, 132, 15-22.
Oki, M., Sunahara, T., Hashizume, M., & Yamamoto, T. (2011). Optimal timing of insecticide fogging to minimize dengue cases: modeling dengue transmission among various seasonalities and transmission intensities. PLoS neglected tropical diseases,5(10),1-5.
Orlikowski, W. J. (1992). The Duality of Technology: Rethinking the Concept of Technology in Organizations. Organization Science, 3(3), 398-427.
Ostfeld, R. S., Glass, G. E., & Keesing, F. (2005). Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in ecology & evolution, 20(6), 328-336.
Ozok, A. A., Wu, H., Garrido, M., Pronovost, P. J., & Gurses, A. P. (2014). Usability and perceived usefulness of personal health records for preventive health care: A case study focusing on patients' and primary care providers' perspectives. Applied ergonomics, 45(3), 613-628.
Padilla-MeléNdez, A., Del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306-317.
Pan, S. L., Hsieh, M. H., & Chen, H. (2001). Knowledge sharing through intranet-based learning: a case study of an online learning center. Journal of Organizational Computing and Electronic Commerce, 11(3), 179-195.
Park, S. Y., Nam, M. W., & Cha, S. B. (2012). University students' behavioral intention to use mobile learning: Evaluating the technology acceptance model. British Journal of Educational Technology, 43(4), 592-605.
Polwiang, S. (2015). The seasonal reproduction number of dengue fever: impacts of climate on transmission. PeerJ, 3, 1-3.
Quick, T. L. (1992). Successful team building. AMACOM Div American Mgmt Assn.
Raza, S. A., Umer, A., & Shah, N. (2017). New determinants of ease of use and perceived usefulness for mobile banking adoption. International Journal of Electronic Customer Relationship Management, 11(1), 44-65.
Reisen, W. K., Thiemann, T., Barker, C. M., Lu, H., Carroll, B., Fang, Y., & Lothrop, H. D. (2010). Effects of warm winter temperature on the abundance and gonotrophic activity of Culex (Diptera: Culicidae) in California. Journal of medical entomology, 47(2), 230-237.
Rogers, E. M. (1995). Diffusion of innovations(4th ed.). New York: Free Press.
Sadaf, A., Newby, T. J., & Ertmer, P. A. (2012). Exploring factors that predict preservice teachers’ intentions to use Web 2.0 technologies using decomposed theory of planned behavior. Journal of Research on Technology in Education, 45(2), 171-196.
Safari, F., Safari, N., & Hasanzadeh, A. (2015). The adoption of software-as-a-service (SaaS): ranking the determinants. Journal of Enterprise Information Management, 28(3), 400-422.
Shen, H., Luo, L., & Sun, Z. (2015). What affect lower grade learner’s perceived usefulness and perceived ease of use of mobile digital textbook learning system? An empirical factor analyses investigation in China. International Journal of Multimedia and Ubiquitous Engineering, 10(1), 33-46.
Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of consumer research, 15(3), 325-343.
Shonk, J. H. (1982). Working in teams: A practical manual for improving work groups. New York:Amacom.
Stewart, G. L., & Barrick, M. R. (2000). Team structure and performance: Assessing the mediating role of intrateam process and the moderating role of task type. Academy of management Journal, 43(2), 135-148.
Tan, M., & Teo, T. S. (2000). Factors influencing the adoption of Internet banking. Journal of the AIS, 1(1es), 5.
Tarhini, A., Hone, K., & Liu, X. (2014). The effects of individual differences on e-learning users’ behaviour in developing countries: A structural equation model. Computers in Human Behavior, 41, 153-163.
Taylor, S., & Todd, P. (1995a). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International journal of research in marketing, 12(2), 137-155.
Taylor, S., & Todd, P. A. (1995b). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
Tsai, T. H., Wei, C. H., & Tsai, C. Y. (2014). Investigating parental intention of using internet filter software. Quality & Quantity, 1-15.
Van de Ven, A. H., Delbecq, A. L., & Koenig Jr, R. (1976). Determinants of coordination modes within organizations. American sociological review, 322-338.
Van Panhuis, W. G., Choisy, M., Xiong, X., Chok, N. S., Akarasewi, P., Iamsirithaworn, S., ... & Vongphrachanh, P. (2015). Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia. Proceedings of the National Academy of Sciences, 112(42), 13069-13074.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E., & Nisalak, A. (1987). Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. The American journal of tropical medicine and hygiene, 36(1), 143-152.
Wayne, S. J., Bradway, L. K. and Liden, R. C. (1997). Task interdependence as a moderator of the relation between group control and performance. Human Relation, 50, 169-181.
Wen T. H., Lin N. H., Lin C. H., King C. C., Su M. D. (2006). Spatial mapping of temporal risk characteristics to improve environmental health risk identification: a case study of a dengue epidemic in Taiwan. Sci Total Environ.367 (2-3), 631-640.
World Health Organization. (2012). Global strategy for dengue prevention and control 2012-2020. Available at:
http://www.who.int/denguecontrol/resources/9789241504034/en/
Wu, P. C., Lay, J. G., Guo, H. R., Lin, C. Y., Lung, S. C., & Su, H. J. (2009). Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Science of the total Environment, 407(7), 2224-2233.
Wu, J. H., Li, S. H., & Sung, W. Y. (2016). The study of perceived environment and its relation to senior citizen's physical activity behavior intention. Journal of Business Research, 69(6), 2259-2264.
Yatigammana, K.,Johar, M. G. M., & Gunavardhana, C. (2014) Impact of Innovation Attributes and Psychological Wellbeing Towards E-Learning Acceptance of Postgraduate Students: Comparison of Sri Lanka and Malaysia. The Online Journal of Distance Education and e-Learning, , 2(1),20-29.
Yeha, RK, & Teng, JC (2012). Extended conceptualisation of perceived usefulness
empirical test in the context of information system use continuance. Behaviour & Information Technology, 31(5), 525-540.

電子全文 電子全文(網際網路公開日期:20230801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔