(100.25.42.117) 您好!臺灣時間:2021/04/21 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇筱涵
研究生(外文):Haiso-Han Su
論文名稱:探討甘草查耳酮 A 誘導人類乳腺癌細胞之 細胞凋亡與自噬作用及其分子機轉
論文名稱(外文):Licochalcone A induced apoptosis and autophagy in human breast cancer cells
指導教授:黃文忠黃文忠引用關係
指導教授(外文):Wen-Chung Huang
口試委員:郭敏玲謝喜龍
口試委員(外文):Kuo Ming-LingHsi-Lung Hsieh
口試日期:2018-06-15
學位類別:碩士
校院名稱:長庚科技大學
系所名稱:健康產業科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:110
中文關鍵詞:乳腺癌細胞甘草查耳酮 A氧化壓力細胞週期細胞凋亡自噬作用癌轉移
外文關鍵詞:Breast cancerLicochalcone AOxidative stressCell cycleApoptosisAutophagyCancer metastasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳腺癌是全球女性常見的癌症之一,其發生率也逐年增加,因此,迫切需要發展有效且安全的抗腫瘤藥物。近年來也有許多科學家發現一些具有抗腫瘤功效的天然純化物。甘草查耳酮 A 分離自甘草的根,具有多種生物和藥理活性,包括抗菌、抗腫瘤及細胞分化的能力,但是否能夠抑制乳腺癌增生以及其作用相關機制仍待釐清。本研究我們將探討甘草查耳酮 A 體外試驗,對於乳腺癌細胞的毒殺作用以及其相關機制,包括活性氧化物的產生、DNA 的損傷、癌轉移及細胞凋亡或自噬作用所引起的細胞死亡。實驗發現,甘草查耳酮 A 能誘導細胞凋亡,抑制細胞週期及細胞增生作用;甘草查耳酮 A 也能改變 MDA-MB-231 乳腺癌細胞株的粒線體膜電位、氧化作用及 DNA 損傷;甘草查耳酮 A 將活化 Cleaved-caspase 3 與 Cleaved-caspase 9,並將粒線體內的細胞色素 c 釋出到細胞質,另外實驗也發現甘草查耳酮 A 能提升 MDA-MB-231 乳腺癌細胞的自噬作用。這些結果推測甘草查耳酮 A 具有成為抗腫瘤藥物的能力,主要藉由提升乳腺癌細胞的細胞凋亡及自噬作用。
Breast cancer is one of the most common cancers among women in the world, Its incidence has also been increasing year by year. Therefore, there is an urgent need to develop effective and safe anti-tumor drugs. Licochalcone A, was isolated from the root of Glycyrrhiza glabra, had multifunctional effects of biological and pharmacological activities, including anti-bacterial, anti-tumor, and cell differentiation capabilities. Therefore, in this study we investigated the cytotoxic effects of licochalcone A on breast cancer cells and its related mechanisms, including apoptosis, cell cycle, the generation of oxidative stress, DNA damage, and autophagy in breast cancer cell MDA-MB-231. The result demonstrated that licochalcone A effectively suppressed cell proliferation, cell cycle, and reduced cell migration. Licochalcone A also modulated mitochondrial membrane potential, and induced oxidative stress, DNA damage. Licochalcone A activated Cleaved-caspase 3 and Cleaved-caspase 9, and induced cytochrome c from the mitochondria into the cytoplasm. We also found that licochalcone A increase autophagy via activated LC3B expression. These results suggest that licochalcone A might increase the effect of apoptosis and autophagy on MDA-MB-231 cells. Therefore, licochalcone A may be a promising target for development as a breast cancer agent.
長庚科技大學學位論文授權書
碩士學位論文指導教授推薦書
碩士學位論文口試審定書
致謝
中文摘要 i
Abstract ii
縮寫表 iii
目錄 vi
圖目錄 xi
表目錄 xii
附圖目錄 xiii
第一章 緒論 1
第一節 癌症(Cancer) 1
第二節 乳腺癌(Breast cancer) 2
第三節 乳腺癌類型 3
第四節 腫瘤細胞的擴散與轉移 4
第五節 乳腺癌目前的治療方式 5
第六節 乳腺癌的預後 6
第七節 甘草查耳酮 A(Licochalcone A; LA) 6
第八節 細胞凋亡(Apoptosis) 7
第九節 DNA 損傷(DNA damage) 8
第十節 細胞週期(Cell cycle) 9
第十一節 活性氧化物(Reactive oxygen species; ROS) 9
第十二節 自噬作用(Autophagy) 10
第二章 研究動機與目的 13
第一節 研究動機 13
第二節 研究目的 14
第三章 實驗材料與方法 15
第一節 細胞株與細胞培養(Cell line and culture) 15
壹、細胞株(Cell lines) 15
貳、細胞培養(Cell culture) 15
一、細胞繼代培養(Subculture) 16
二、細胞數目測定(Cell counter determination) 17
第二節 試劑(Reagents) 17
壹、藥物(Drug) 17
貳、抗體(Antibodies) 17
第三節 實驗流程(Experiment process) 19
第四節 實驗方法(Methods) 20
壹、細胞存活率檢測(Cell viability assays) 20
一、乳腺癌細胞存活率分析(CCK-8 assay) 20
二、乳腺癌細胞數目分析(Trypan blue assay) 21
貳、膠凝體電泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis; SDS-PAGE) 22
一、萃取細胞中蛋白質(Protein extraction) 22
二、蛋白質定量(Protein quantification) 22
三、膠凝體電泳配置 23
四、西方墨點法(Western blot) 23
參、細胞增殖能力檢測(Cell survival assay) 24
一、細胞群落生成實驗(Clonogenic survival assay) 24
二、細胞週期分析(Cell cycle analysis) 26
肆、細胞凋亡細胞核變化觀察(Cell apoptosis assay) 27
一、DAPI 染色(DAPI stain) 27
伍、流式細胞儀分析(Flow cytometric analysis) 28
一、細胞凋亡分析(Annexin V/PI assay) 28
二、Caspase 3/7 活性測定(Caspase 3/7 assay) 29
三、粒線體膜電位分析(Mitopotential assay) 30
陸、細胞內 DNA 損傷情形分析(DNA damage assay) 31
一、單細胞凝膠電泳(Single cell gel electrophoresis assay) 31
二、免疫螢光染色(Immunofluorescence staining; IF) 32
三、DNA 損傷測定(Multi-color DNA damage kit) 34
柒、細胞內活性氧化物測定(Cell ROS assay) 35
一、分光光度計檢測法(Fluorescence spectrophotometry) 35
二、螢光顯微鏡檢測法(Fluorescence microscopy) 36
三、流式細胞儀檢測法(Flow cytometric analysis) 37
四、粒線體內活性氧化物測定(MitoSOX stain) 38
捌、細胞遷移試驗(Cell migration assay) 39
乳腺癌細胞傷口癒合試驗(Wound healing assay) 39
玖、細胞侵襲試驗(Cell invasion assay) 40
乳腺癌細胞侵襲試驗(Transwell invasion assay) 40
第五節 統計分析(Statistical analysis) 41
第四章 實驗結果 42
第一節 Licochalcone A 對於人類乳腺癌細胞的存活率影響 42
第二節 Licochalcone A 對於人類乳腺癌細胞增殖能力的影響 43
第三節 Licochalcone A 促使人類乳腺癌細胞產生細胞凋亡 43
第四節 Licochalcone A 促使人類乳腺癌細胞產生 DNA 損傷 44
第五節 Licochalcone A 對於人類乳腺癌細胞轉移/侵襲能力影響 44
第六節 Licochalcone A 誘導人類乳腺癌細胞活性氧生成 46
第七節 Licochalcone A 與細胞凋亡相關訊號路徑的影響 47
第八節 Licochalcone A 與自噬作用相關訊號路徑的影響 47
第五章 討論 49
第一節 Licochalcone A 對於乳腺癌細胞的影響 49
第二節 信號路徑的探討 56
第三節 未來展望 60
第六章 結論 61
圖表 63
參考文獻 95

圖目錄
圖一 實驗架構圖 19
圖二 Licochalcone A 對於人類乳腺癌細胞增殖能力的影響 63
圖三 Licochalcone A 對於人類乳腺癌細胞增殖能力的影響 65
圖四 Licochalcone A 促使人類乳腺癌細胞產生細胞凋亡 68
圖五 Licochalcone A 促使人類乳腺癌細胞產生 DNA 損傷 73
圖六 Licochalcone A 對於人類乳腺癌細胞轉移/侵襲能力的影響 77
圖七 Licochalcone A 誘導人類乳腺癌細胞活性氧生成 82
圖八 Licochalcone A 與細胞凋亡相關信號路徑的影響 86
圖九 Licochalcone A 與自噬作用相關信號路徑的影響 90
圖十 Licochalcone A 對於人類乳腺癌細胞信號路徑的影響 93

表目錄
表一 Licochalcone A 抑制百分之 50 細胞存活的濃度 94

附圖目錄
附圖一 甘草查耳酮 A 結構式 106
附圖二 台灣 105 年十大癌症死亡率統計圖 107
附圖三 細胞凋亡路徑圖 108
附圖四 細胞自噬作用路徑圖 109
附圖五 上皮細胞-間充質轉化作用 110


1.Seguin, L., et al., An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol, 2014. 16(5): p. 457-68.
2.Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
3.Schmid, D. and M.F. Leitzmann, Television viewing and time spent sedentary in relation to cancer risk: a meta-analysis. J Natl Cancer Inst, 2014. 106(7).
4.Lee, Y.T., Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol, 1983. 23(3): p. 175-80.
5.http://www.breastcancer.org/symptoms/types
6.Yu, Y.H., C. Liang, and X.Z. Yuan, Diagnostic value of vacuum-assisted breast biopsy for breast carcinoma: a meta-analysis and systematic review. Breast Cancer Res Treat, 2010. 120(2): p. 469-79.
7.Prat, A. and C.M. Perou, Mammary development meets cancer genomics. Nat Med, 2009. 15(8): p. 842-4.
8.Hudis, C.A. and L. Gianni, Triple-negative breast cancer: an unmet medical need. Oncologist, 2011. 16 Suppl 1: p. 1-11.
9.Dunning, A.M., et al., A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 1999. 8(10): p. 843-54.
10.Eroles, P., et al., Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev, 2012. 38(6): p. 698-707.
11.Klein, C.A., Cancer. The metastasis cascade. Science, 2008. 321(5897): p. 1785-7.
12.Chiang, A.C. and J. Massague, Molecular basis of metastasis. N Engl J Med, 2008. 359(26): p. 2814-23.
13.http://www.cancer.ca/en/cancer-information/cancer-type/metastatic-cancer/metastatic-cancer/?region=on.
14.Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 2008. 14(6): p. 818-29.
15.Shamir, E.R., et al., Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol, 2014. 204(5): p. 839-56.
16.Larue, L. and A. Bellacosa, Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene, 2005. 24(50): p. 7443-54.
17.Johnstone, P.A., M.S. Norton, and R.H. Riffenburgh, Survival of patients with untreated breast cancer. J Surg Oncol, 2000. 73(4): p. 273-7.
18.Hao, H., et al., Effect of licochalcone A on growth and properties of Streptococcus suis. PLoS One, 2013. 8(7): p. e67728.
19.Rafi, M.M., et al., Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavonoid. Anticancer Res, 2000. 20(4): p. 2653-8.
20.Fu, Y., et al., Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem Biophys Res Commun, 2004. 322(1): p. 263-70.
21.Park, E.J., et al., Licochalcone A: an inducer of cell differentiation and cytotoxic agent from Pogostemon cablin. Planta Med, 1998. 64(5): p. 464-6.
22.Haraguchi, H., et al., Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry, 1998. 48(1): p. 125-9.
23.Tsukiyama, R., et al., Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob Agents Chemother, 2002. 46(5): p. 1226-30.
24.Qiu, J., et al., Influence of subinhibitory concentrations of licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus. FEMS Microbiol Lett, 2010. 307(2): p. 135-41.
25.Cui, Y., et al., Anti-inflammatory activity of licochalcone A isolated from Glycyrrhiza inflata. Z Naturforsch C, 2008. 63(5-6): p. 361-5.
26.Kuramoto, K., et al., Licochalcone A specifically induces cell death in glioma stem cells via mitochondrial dysfunction. FEBS Open Bio, 2017. 7(6): p. 835-844.
27.Zhai, L., et al., The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother, 1999. 43(6): p. 793-803.
28.Chen, M., et al., Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother, 1994. 38(7): p. 1470-5.
29.Park, J.H., et al., Anti-proliferative effect of licochalcone A on vascular smooth muscle cells. Biol Pharm Bull, 2008. 31(11): p. 1996-2000.
30.Green, D.R., Means to an End: Apoptosis and Other Cell Death Mechanisms. 2011: Cold Spring Harbor Laboratory Press.
31.Bernstein, C., et al., DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res, 2002. 511(2): p. 145-78.
32.Ernst, P., Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther, 1999. 13 Suppl 1: p. 13-8.
33.Hakem, R., DNA-damage repair; the good, the bad, and the ugly. Embo j, 2008. 27(4): p. 589-605.
34.Ciccia, A. and S.J. Elledge, The DNA damage response: making it safe to play with knives. Mol Cell, 2010. 40(2): p. 179-204.
35.De Bont, R. and N. van Larebeke, Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis, 2004. 19(3): p. 169-85.
36.Hardbower, D.M., et al., Chronic inflammation and oxidative stress: the smoking gun for Helicobacter pylori-induced gastric cancer? Gut Microbes, 2013. 4(6): p. 475-81.
37.Wang, J.D. and P.A. Levin, Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol, 2009. 7(11): p. 822-7.
38.Furusawa, Y., et al., Checkpoint kinase 2 is dispensable for regulation of the p53 response but is required for G2/M arrest and cell survival in cells with p53 defects under heat stress. Apoptosis, 2017. 22(10): p. 1225-1234.
39.Wang, X., et al., Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells. Molecular Medicine Reports, 2017. 16(4): p. 3894-3900.
40.Li, D., et al., The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget, 2017. 8(49): p. 85276-85289.
41.Omberg, L., et al., Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression. Mol Syst Biol, 2009. 5: p. 312.
42.Scandalios, J.G., Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res, 2005. 38(7): p. 995-1014.
43.Ogino, T., M. Ozaki, and A. Matsukawa, Oxidative stress enhances granulocytic differentiation in HL 60 cells, an acute promyelocytic leukemia cell line. Free Radic Res, 2010. 44(11): p. 1328-37.
44.Borges, M.B., et al., Characterization of hydrophobic interaction and antioxidant properties of the phenothiazine nucleus in mitochondrial and model membranes. Free Radic Res, 2010. 44(9): p. 1054-63.
45.Rus, A., et al., Endothelial NOS-derived nitric oxide prevents injury resulting from reoxygenation in the hypoxic lung. Free Radic Res, 2010. 44(9): p. 1027-35.
46.Simon, H.U., A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000. 5(5): p. 415-8.
47.Gupta, S.C., et al., Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal, 2012. 16(11): p. 1295-322.
48.Coia, H., et al., Detection of a lipid peroxidation-induced DNA adduct across liver disease stages. Hepatobiliary Surg Nutr, 2018. 7(2): p. 85-97.
49.Prasad Tharanga Jayasooriya, R.G., et al., Camptothecin induces G2/M phase arrest through the ATM-Chk2-Cdc25C axis as a result of autophagy-induced cytoprotection: Implications of reactive oxygen species. Oncotarget, 2018. 9(31): p. 21744-21757.
50.Zhu, Y., et al., Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res, 2012. 22(1): p. 127-41.
51.Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
52.de Waal, E.J., et al., Quantitative changes in the lysosomal vacuolar system of rat hepatocytes during short-term starvation. A morphometric analysis with special reference to macro- and microautophagy. Cell Tissue Res, 1986. 243(3): p. 641-8.
53.Homma, K., K. Suzuki, and H. Sugawara, The Autophagy Database: an all-inclusive information resource on autophagy that provides nourishment for research. Nucleic Acids Res, 2011. 39(Database issue): p. D986-90.
54.Iwata, J., et al., Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem, 2006. 281(7): p. 4035-41.
55.Amaravadi, R.K., et al., Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest, 2007. 117(2): p. 326-36.
56.Levine, B., N. Mizushima, and H.W. Virgin, Autophagy in immunity and inflammation. Nature, 2011. 469(7330): p. 323-35.
57.Cesen, M.H., et al., Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res, 2012. 318(11): p. 1245-51.
58.Bandyopadhyay, U., et al., The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol, 2008. 28(18): p. 5747-63.
59.Lamb, C.A., T. Yoshimori, and S.A. Tooze, The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 2013. 14(12): p. 759-74.
60.Carames, B., et al., The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol, 2015. 67(6): p. 1568-76.
61.Carames, B., et al., Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum, 2010. 62(3): p. 791-801.
62.Qu, X., et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003. 112(12): p. 1809-20.
63.Paglin, S., et al., A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res, 2001. 61(2): p. 439-44.
64.Xu, W., et al., TAZ inhibition restores sensitivity of cisplatin via AKT/mTOR signaling in lung adenocarcinoma. Oncol Rep, 2017. 38(3): p. 1815-1821.
65.Strober, W., Trypan blue exclusion test of cell viability. Curr Protoc Immunol, 2001. Appendix 3: p. Appendix 3B.
66.Towbin, H., T. Staehelin, and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A, 1979. 76(9): p. 4350-4.
67.Ngunjiri, J.M., M.J. Sekellick, and P.I. Marcus, Clonogenic assay of type a influenza viruses reveals noninfectious cell-killing (apoptosis-inducing) particles. J Virol, 2008. 82(6): p. 2673-80.
68.Franken, N.A., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9.
69.Krishan, A., Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol, 1975. 66(1): p. 188-93.
70.Darzynkiewicz, Z., F. Traganos, and M.R. Melamed, New cell cycle compartments identified by multiparameter flow cytometry. Cytometry, 1980. 1(2): p. 98-108.
71.Olszak, T., et al., Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 2012. 336(6080): p. 489-93.
72.Huang, F., et al., Isolation and purification of novel peptides derived from Sepia ink: Effects on apoptosis of prostate cancer cell PC3. Mol Med Rep, 2017. 16(4): p. 4222-4228.
73.Saleh, A.M., et al., The pyridone-annelated isoindigo (5'-Cl) induces apoptosis, dysregulation of mitochondria and formation of ROS in leukemic HL-60 cells. Cell Physiol Biochem, 2015. 35(5): p. 1958-74.
74.Cortes Gutierrez, E.I., et al., Expression of the HPV18/E6 oncoprotein induces DNA damage. Eur J Histochem, 2017. 61(2): p. 2773.
75.Rollins, J. and V. Miskolci, Immunofluorescence and subsequent confocal microscopy of intracellular TNF in human neutrophils. Methods Mol Biol, 2014. 1172: p. 263-70.
76.Ccai, S.A., et al., Angiotensin-(1-7) protects cardiac myocytes against high glucose-induced injury by inhibiting ClC-3 chloride channels. Nan Fang Yi Ke Da Xue Xue Bao, 2017. 37(7): p. 895-901.
77.Wang, Q. and M.H. Zou, Measurement of Reactive Oxygen Species (ROS) and Mitochondrial ROS in AMPK Knockout Mice Blood Vessels. Methods Mol Biol, 2018. 1732: p. 507-517.
78.Deng, Y., et al., The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells. Biomed Pharmacother, 2017. 93: p. 976-984.
79.Lamanuzzi, A., et al., Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma. Oncotarget, 2018. 9(29): p. 20563-20577.
80.Yang, L., et al., Peptide SA12 inhibits proliferation of breast cancer cell lines MCF-7 and MDA-MB-231 through G0/G1 phase cell cycle arrest. Onco Targets Ther, 2018. 11: p. 2409-2417.
81.Shoja, M.H., et al., Glycosmis pentaphylla (Retz.) DC arrests cell cycle and induces apoptosis via caspase-3/7 activation in breast cancer cells. J Ethnopharmacol, 2015. 168: p. 50-60.
82.Li, T., et al., Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cell Physiol Biochem, 2014. 34(4): p. 1351-8.
83.Kim, H.Y., et al., Sophora flavescens Aiton Decreases MPP(+)-Induced Mitochondrial Dysfunction in SH-SY5Y Cells. Front Aging Neurosci, 2018. 10: p. 119.
84.Knickle, A., et al., Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol, 2018. 118: p. 154-167.
85.衛福部, 衛福部 105 年台灣十大癌症. 2016.
86.Lowe, S.W. and A.W. Lin, Apoptosis in cancer. Carcinogenesis, 2000. 21(3): p. 485-95.
87.Martini-Stoica, H., et al., The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci, 2016. 39(4): p. 221-234.
88.Bosukonda, A. and W.D. Carlson, Harnessing the BMP signaling pathway to control the formation of cancer stem cells by effects on epithelial-to-mesenchymal transition. Biochem Soc Trans, 2017. 45(1): p. 223-228.


電子全文 電子全文(網際網路公開日期:20230713)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔