跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉治昇
研究生(外文):Chih Sheng Yeh
論文名稱:應用於第五代無線通訊系統之壓控振盪器電路研製
論文名稱(外文):Design and Implementation of Voltage-Controlled Oscillator for Fifth Generation Wireless Systems
指導教授:高瑄苓
指導教授(外文):H. L. Kao
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:66
中文關鍵詞:壓控振盪器切換電感相位雜訊輸出功率可調範圍
外文關鍵詞:voltage-controlled oscillatorswitchable inductorphase noiseoutput powertuning range
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著無線通訊系統的蓬勃發展,低成本、高效能與高整合性的需求越來越被重視,而微波與毫米波無線通訊系統適用於高速數據傳輸與行動通訊上,並符合上述的需求,也是未來無線通訊的應用趨勢。
本篇論文在矽基板上採用0.5 m氮化鎵製程來實現高功率與低相位雜訊切換電感陣列交叉耦合壓控振盪器,利用切換電感陣列實現多頻段以增加可調頻寬,並使用可變電容微調頻率,並採用Capacitance-splitting技術來增加電晶體的負電導值,在頻率為3.5 GHz時負電導值增加126%,以滿足切換電感壓控振盪器的起振條件。一階切換電感壓控振盪器有兩個頻帶,分別為3.41-3.57 GHz和3.85-3.94 GHz,二階切換電感壓控振盪器有四個頻帶,可調範圍從3.16至3.9 GHz,在10 V供應電壓下,輸出頻率為3.5 GHz,輸出功率(Pout)為21 dBm,在距離3.3 GHz載波頻率1MHz偏移下提供最佳的相位雜訊為-123.04 dBc / Hz。
In recent years, wireless communication systems have been required for low cost, high efficiency, and high integration. The microwave and millimeter-wave wireless communication systems are suitable for high data rate application and mobile communication. Therefore, it is the trend of future applications of wireless system.
This thesis presents high output power and low phase noise cross-coupled voltage-controlled oscillators (VCOs) containing array of switchable inductors. The VCOs are implemented using 0.5 m Gallium-Nitride (GaN) high electron mobility transistor on Si substrate technology. We use the array of switchable inductors to achieve band selection, whereas fine tuning is controlled using varactors. Additionally, we use capacitance-splitting to satisfy start-up condition. The Gm value is increased by approximately 126% at 3.5 GHz. The one-stage (N=1) VCO operates in the ranges 3.41–3.57 GHz and 3.85–3.94 GHz. The two-stage (N=2) VCO operates in the range 3.16–3.9 GHz. The measured frequency band of the two-stage VCO is located 3.3 GHz, and the measured phase noise at 1 MHz offset is −123 dBc/Hz. This VCO oscillates at a frequency of 3.5 GHz and provides 21 dBm of power at a biasing of Vd=10 V.
指導教授推薦書
論文口試委員會審定書
誌 謝 iii
中文摘要 iv
英文摘要 v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 6
1.3 論文架構 8
第二章 文獻回顧 10
2.1 Ka-band壓控振盪器 10
2.2 W-band壓控振盪器 12
2.3 X-band壓控振盪器 13
2.4 Capacitance-Splitting壓控振盪器 14
2.5 氮化鎵差動振盪器 16
2.6 切換電容陣列壓控振盪器 18
2.7 垂直式切換電感壓控振盪器 19
2.8 自感式切換電感壓控振盪器 20
2.9 切換耦合電感壓控振盪器 22
第三章 高輸出功率與低相位雜訊氮化鎵切換電感陣列壓控振盪器之設計 24
3.1 簡介 24
3.2 電路架構與原理 25
3.2.1 切換電感電路架構 27
3.2.2 電容分裂技術(Capacitance-splitting) 29
3.2.3 切換電感陣列壓控振盪器小信號模型 32
3.3 切換電感陣列壓控振盪器 34
3.3.1 一階切換電感壓控振盪器 35
3.3.2 二階切換電感壓控振盪器 38
第四章 高輸出功率與低相位雜訊氮化鎵切換電感陣列壓控振盪器之量測結果 41
4.1 電路模擬與量測結果 41
4.2 結果與討論 48
第五章 結論 49
參考文獻 50

圖目錄
圖 1.1 無線通訊系統相關應用 ................................................................. 3
圖 1.2 無線區域網路與蜂巢式網路的發展歷程..................................... 3
圖 1.3 應用於 5G 無線通訊系統使用的場景 .......................................... 4
圖 1.4 應用於 5G 無線通訊系統頻段相對應的使用的時機.................. 5
圖 1.5 微波與毫米波無線通訊使用的頻段與應用................................. 6
圖 1.6 射頻前端電路模組示意圖 ............................................................ 7
圖 2.1 Ka-band 單埠輸出壓控振盪器示意圖 ........................................ 11
圖 2.2 W-Band 單埠輸出壓控振盪器示意圖......................................... 12
圖 2.3 X-band 單埠輸出壓控振盪器架構圖.......................................... 14
圖 2.4 Capacitance-Splitting 電路架構.................................................... 15
圖 2.5 Capacitance-Splitting 技術............................................................ 16
圖 2.6 氮化鎵差動振盪器架構 ............................................................... 17
圖 2.7 切換電容陣列壓控振盪器架構................................................... 18
圖 2.8 兩種型式的垂直式切換電感架構............................................... 20
圖 2.9 自感式切換電感壓控振盪器架構圖........................................... 21
圖 2.10 兩種型式的自感式切換電感架構............................................. 21
圖 2.11 切換耦合電感壓控振盪器架構圖 ............................................. 23
圖 3.1 加入切換電感陣列(a) N=1 與(b) N=2 的交錯耦合壓控振盪器27
圖 3.2 切換電感電路架構 ....................................................................... 28
圖 3.3 切換電感開啟與關閉時的 S 參數............................................... 29
圖 3.4 Capacitance-splitting 架構 ............................................................ 30
圖 3.5 核心壓控振盪器、一階切換電感壓控振盪器與二階切換電感壓
控振盪器加入微帶線(ML2)的負電導(Gm)與頻率模擬結果 ................ 31
圖 3.6 電晶體轉導(gm)、等效電阻值(Rp)與振盪頻率(fo)在起振條件下的
關係........................................................................................................... 32
圖 3.7 (a)開啟與(b)關閉狀態下的切換電感等效半電路...................... 34
圖 3.8 (a)一階與(b)二階切換電感陣列交錯耦合壓控振盪器。.......... 37
圖 3.9 耦合參數(k)與電感感值 Lsw2對 d 參數的關係圖 ...................... 39
圖 3.10 二階切換電感壓控振盪器等效感值模擬結果......................... 40
圖 4.1 (a)一階切換電感與(a)二階切換電感壓控振盪器晶片圖.......... 43
圖4.2 (a)一階切換電感壓控振盪器在開啟與關閉狀態下可調頻率與輸
出功率的量測結果(b)二階切換電感壓控振盪器在四個不同的狀態
下,可調頻率與輸出功率量測結果 ...................................................... 44
圖 4.3 (a)在狀態 1 與狀態 2 下,一階切換電感壓控振盪器的相位雜訊
量測結果(b)在狀態 1 到狀態 4 下,二階切換電感壓控振盪器的相位雜
訊量測結果 .............................................................................................. 46

表目錄
表 1.1 5G NR 支援電信商......................................................................... 5
表 1.2 微波與毫米波無線電波頻帶 ......................................................... 6
表 1.3 半導體材料特性比較表 ................................................................. 8
表 2.1 Ka-band 壓控振盪器實作結果 .................................................... 11
表 2.2 W-band 壓控振盪器實作結果...................................................... 13
表 2.3 X-band 單埠輸出壓控振盪器實作結果...................................... 14
表 2.4 Capacitance-Splitting 壓控振盪器實作結果 ............................... 16
表 2.5 氮化鎵差動振盪器實作結果....................................................... 17
表 2.6 切換電容陣列壓控振盪器實作結果........................................... 19
表 2.7 垂直式切換電感壓控振盪器實作結果....................................... 20
表 2.8 自感式切換電感壓控振盪器實作結果....................................... 22
表 2.9 切換耦合電感壓控振盪器實作結果........................................... 23
表 3.1 傳統交錯耦合壓控振盪器元件參數列表................................... 27
表 3.2 切換電感電路元件參數列表 ....................................................... 28
表 3.3 一階切換電感壓控振盪器電路元件設計參數........................... 37
表 3.4 二階切換電感壓控振盪器電路元件設計參數........................... 39
表 3.5 一階與二階切換電感壓控振盪器電路設計參數....................... 40
表 4.1 一階與二階切換電感壓控振盪器電路量測結果....................... 46
表 4.2 切換電感陣列壓控振盪器與其他文獻特性比較表................... 47
1. IEEE 5G, "IEEE 5G and Beyond Technology Roadmap White Paper"[Online] https://5g.ieee.org/images/files/pdf/ieee-5g-roadmap- white-paper.pdf
2. D. J. Deng, K. C. Chen and R. S. Cheng, "IEEE 802.11ax: Next generation wireless local area networks," 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Rhodes, 2014, pp. 77-82.
3. Huawei, "5G Spectrum Public Policy Position," [Online] http://www.huawei.com/en/about-huawei/public-policy/5g-spectrum
4. 3GPP, " Release 15” [Online] http://www.3gpp.org/release-15
5. Telecommunications Industry Association Webinar, "How will smart devices drive mobile growth in 2010" [Online] https://sites.tiaonline.org/market_intelligence/mrf/webinar/TIAWirelessWebinar_20100210_FINAL.pdf
6. Federal Communications Commission, "First Report and Order." FCC 02-48, April 22, 2002.
7. 石紹平, " V-band雙推式砷化鎵壓控振盪器與射頻無線充電高功率氮化鎵壓控振盪器之研製," 長庚大學光電工程研究所碩士論文 2012.
8. 鄒權煒, 徐碩鴻, "應用於射頻之矽基板氮化鎵元件技術," 奈米通訊
9. B. Piernas, K. Nishikawa, T. Nakagawa and K. Araki, "A compact and low-phase-noise Ka-band pHEMT-based VCO," in IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 778-783, Mar 2003.
10. P. Y. Chen, Z. M. Tsai, S. S. Lu and H. Wang, "An Ultra Low Phase Noise W-Band GaAs-Based PHEMT MMIC CPW VCO," 2003 33rd European Microwave Conference, Munich, Germany, 2003, pp. 503-506.
11. Z. Q. Cheng, Y. Cai, J. Liu, Y. Zhou, K. M. Lau and K. J. Chen, "A low phase-noise X-band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/Al0.05Ga0.95 N/GaN HEMTs," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 1, pp. 23-29, Jan. 2007.
12. L. Lianming, P. Reynaert, and M. S. J. Steyaert, "A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate-Drain Impedance- Balancing Techniques," IEEE Transactions on Microwave Theory and Techniques, vol. 59, pp. 406-413, 2011.
13. C. Sanabria, Hongtao Xu, S. Heikman, U. K. Mishra and R. A. York, "A GaN Differential Oscillator With Improved Harmonic Performance," in IEEE Microwave and Wireless Components Letters, vol. 15, no. 7, pp. 463-465, July 2005.
14. Y. J. Moon, Y. S. Roh, C. Y. Jeong and C. Yoo, "A 4.39–5.26 GHz LC-Tank CMOS Voltage-Controlled Oscillator With Small VCO-Gain Variation," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 8, pp. 524-526, Aug. 2009.
15. W. Zou, X. Chen, K. Dai and X. Zou, "Switched-Inductor VCO Based on Tapped Vertical Solenoid Inductors," in Electronics Letters, vol. 48, no. 9, pp. 509-511, April 26 2012.
16. F. Cernoia, D. Ponton, P. Palestri1, P. Thurner, N. D. Dalt, G. Cecco, L. Selmi,"Design and Implementation of Switched Coil LC-VCOs in the GHz Range Using the Self-Inductance Technique," International Journal of Circuit Theory and Applications vol. 43, no. 6, pp. 709-721, 2013.
17. A. Italia, C. M. Ippolito and G. Palmisano, "A 1-mW 1.13–1.9 GHz CMOS LC VCO Using Shunt-Connected Switched-Coupled Inductors," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 6, pp. 1145-1155, June 2012.
18. H. L. Kao, C. S. Yeh, H. C. Chiu, C. L. Cho and C. H. Cheng,"A High Output Power and Low Phase Noise GaN HEMT VCO With Array of Switchable Inductors," International Journal of Circuit Theory and Applications vol. 45, no. 11, pp. 1621-1636, 2017.
19. B. Razavi,"RF Microelectronics," 2nd ed. Prentice Hall, pp. 532-536, 2011.
20. J. Kim, J. Shin, S. Kim, and H. Shin,"A Wide-Band CMOS LC VCO With Linearized Coarse Tuning Characteristics," IEEE Trans. Circuits Syst. II: Express Briefs vol. 55, no. 5, pp. 399-403, 2008.
21. H. L. Kao, S. P. Shih and C. S. Yeh, "Low phase noise V-band push-push voltage controlled oscillator using 0.15 μm GaAs pseudomorphic high electron-mobility transistor technology," in IET Microwaves, Antennas & Propagation, vol. 6, no. 6, pp. 653-657, April 24 2012.
22. D. B. Leeson,"A Simple Model of Feedback Oscillator Noise Spectrum," Proc. IEEE, vol. 54, no.2, pp. 329-330, 1966.
23. H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao and W. Yang, "Design of Ultra-Low Phase Noise and High Power Integrated Oscillator in 0.25 m GaN-on-SiC HEMT Technology," in IEEE Microwave and Wireless Components Letters, vol. 24, no. 2, pp. 120-122, Feb. 2014.
24. A.P.M. Maas, F.E. van Vliet,"A Low-Noise X-Band Microstrip VCO With 2.5 GHz Tuning Range Using a GaN-on-SiC pHEMT," European Gallium Arsenide and Other Semiconductor Application Symp., pp. 257 – 260, 2005.
25. H.-L. Kao, C.-S. Yeh, S.-P. Shih, H.-C. Chiu, Y.-Y. Chen,"High Microwave Power Source for 2.45 GHz Wireless Power Charger Applications," International Journal of Electronics, vol. 101, no. 4, pp. 469-478, 2014.
26. Z. Zhu, L. Liang, Y. Yang," A Startup Robust Feedback Class-C VCO With Constant Amplitude Control in 0.18 m CMOS," IEEE Microwave and Wireless Components Lett., vol. 25, no. 8, pp. 541-543, 2015.
27. X. Yu, A. El-Gouhary, N. M. Neihart,"A Transformer-Based Dual-Coupled Triple-Mode CMOS LC-VCO," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2059 - 2070 , 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊