|
[1] Yang W-T. Functionalization of Hydrogel by Using Polyelectrolyte Multilayer Films on the Induction of Neural Stem/Progenitor Cells. 2015. [2] Azari H, Osborne GW, Yasuda T, Golmohammadi MG, Rahman M, Deleyrolle LP, et al. Purification of immature neuronal cells from neural stem cell progeny. PLoS One. 2011;6:e20941. [3] Gage FH. Mammalian Neural Stem Cells. Science. 2000;287:1433-8. [4] Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M, Mizuno H, et al. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells. 2007;25:562-70. [5] Miller JM, Prell CGL, Prieskorn DM, Wys NL, Altschuler RA. Delayed Neurotrophin Treatment following Deafness Rescues Spiral Ganglion Cells from Death and Promotes Regrowth of Auditory Nerve Peripheral Processes: Effects of Brain-Derived Neurotrophic Factor and Fibroblast Growth Factor. Journal of Neuroscience Research. 2007;85:1959-69. [6] Savignat M, Vodouhe C, Ackermann A, Haikel Y, Lavalle P, Libersa P. Evaluation of Early Nerve Regeneration Using a Polymeric Membrane Functionalized With Nerve Growth Factor (NGF) After a Crush Lesion of the Rat Mental Nerve. American Association of Oral and Maxillofacial Surgeons. 2008;66:711-7. [7] Barnabe-Heider F, Wasylnka JA, Fernandes KJ, Porsche C, Sendtner M, Kaplan DR, et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron. 2005;48:253-65. [8] Matyash M, Despang F, Mandal R, Fiore D, Gelinsky M, Ikonomidou C. Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress. Tissue engineering Part A. 2012;18:55-66. [9] Petersen PH, Zou K, Hwang JK, Jan YN, Zhong W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature. 2002;419:929-34. [10] Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RDG. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. GENES & DEVELOPMENT. 1996;10:3129-40. [11] Lee IC, Wu YC. Facilitating neural stem/progenitor cell niche calibration for neural lineage differentiation by polyelectrolyte multilayer films. Colloids Surf B Biointerfaces. 2014;121:54-65. [12] Lee I-C, Wu Y-C. Assembly of Polyelectrolyte Multilayer Films on Supported Lipid Bilayers To Induce Neural Stem/Progenitor Cell Differentiation into Functional Neurons. ACS Applied Materials & Interfaces. 2014;6:14439-50. [13] Crowder SW, Balikov DA, Hwang YS, Sung HJ. Cancer stem cells under hypoxia as a chemoresistance factor in breast and brain. Curr Pathobiol Rep. 2014;2:33-40. [14] Mao AS, Shin JW, Mooney DJ. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials. 2016;98:184-91. [15] Tsai H-A, Wu R-R, Lee IC, Chang H-Y, Shen C-N, Chang Y-C. Selection, Enrichment, and Maintenance of Self-Renewal Liver Stem/Progenitor Cells Utilizing Polypeptide Polyelectrolyte Multilayer Films. Biomacromolecules. 2010;11:994-1001. [16] Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances. BioMed Research International. 2014;2014:921905. [17] Metallo CM, Mohr JC, Detzel CJ, de Pablo JJ, Van Wie BJ, Palecek SP. Engineering the Stem Cell Microenvironment. Biotechnology Progress. 2007;23:18-23. [18] Williams CA, Lavik EB. Engineering the CNS stem cell microenvironment. Regenerative medicine. 2009;4:865-77. [19] Geraerts M, Verfaillie CM. Adult Stem and Progenitor Cells. Adv Biochem Engin/Biotechnol. 2009;114:1-21. [20] Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132:598-611. [21] Gogel S, Gubernator M, Minger SL. Progress and prospects: stem cells and neurological diseases. Gene Ther. 2011;18:1-6. [22] Bond AM, Ming G-l, Song H. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell. 2015;17:385-95. [23] Temple S. The development of neural stem cells. Nature. 2001;414:112-7. [24] Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology. 2014;39:169-88. [25] Tso D, McKinnon RD. Cell replacement therapy for central nervous system diseases. Neural Regen Res. 2015;10:1356-8. [26] Studer L. The Nervous System. Essentials of Stem Cell Biology.149-56. [27] Jacobson S, Guth L. An electrophysiological study of the early stages of peripheral nerve regeneration. Experimental Neurology. 1965;11:48-60. [28] Carlstedt T. Nerve fibre regeneration across the peripheral–central transitional zone. Journal of Anatomy. 1997;190:51-6. [29] Korsching S. The Neurotrophic Factor Concept: A Reexamination. The Journal of Neuroscience. 1993;13:2739-48. [30] Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990;343:269-72. [31] Zietlow R, Lane EL, Dunnett SB, Rosser AE. Human stem cells for CNS repair. Cell Tissue Res. 2008;331:301-22. [32] G. L. Nerve Injury and Repair. New York: Longman Group UK Ltd. 1988. [33] Tsuruma A, Tanaka M, Yamamoto S, Shimomura M. Control of neural stem cell differentiation on honeycomb films. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;313-314:536-40. [34] Wu ZR, Ma J, Liu BF, Xu QY, Cui FZ. Layer-by-layer assembly of polyelectrolyte films improving cytocompatibility to neural cells. J Biomed Mater Res A. 2007;81:355-62. [35] Chang YJ, Hsu CM, Lin CH, Lu MS, Chen L. Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling. Biochim Biophys Acta. 2013;1830:4130-6. [36] Pluchino S, Zanotti L, Deleidi M, Martino G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Research Reviews. 2005;48:211-9. [37] Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief Electrical Stimulation Promotes the Speed and Accuracy of Motor Axonal Regeneration. The Journal of Neuroscience. 2000;20:2602-8. [38] AA D, S T. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Letters to Nature. 1994;372:263-6. [39] Lei KF, Lee IC, Liu YC, Wu YC. Successful differentiation of neural stem/progenitor cells cultured on electrically adjustable indium tin oxide (ITO) surface. Langmuir. 2014;30:14241-9. [40] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science. 1997;277:1232-7. [41] Kidambi S, Lee I, Chan C. Controlling Primary Hepatocyte Adhesion and Spreading on Protein-Free Polyelectrolyte Multilayer Films. J AM CHEM SOC. 2004;126:16286-7. [42] Richert L, Lavalle P, Vautier D, Senger B, Stoltz J-F, Schaaf P, et al. Cell Interactions with Polyelectrolyte Multilayer Films. Biomacromolecules. 2002;3:1170-8. [43] Wilson JT, Cui W, Kozlovskaya V, Kharlampieva E, Pan D, Qu Z, et al. Cell surface engineering with polyelectrolyte multilayer thin films. Journal of the American Chemical Society. 2011;133:7054-64. [44] Trojanowicz M, Mulchandani A. Analytical applications of planar bilayer lipid membranes. Anal Bioanal Chem. 2004;379:347-50. [45] Shiratori SS, Rubner MF. pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes. Macromolecules. 2000;33:4213-9. [46] Kucerka N, Tristram-Nagle S, Nagle JF. Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. The Journal of membrane biology. 2005;208:193-202. [47] Lee IC, Liu YC, Tsai HA, Shen CN, Chang YC. Promoting the selection and maintenance of fetal liver stem/progenitor cell colonies by layer-by-layer polypeptide tethered supported lipid bilayer. ACS Appl Mater Interfaces. 2014;6:20654-63. [48] Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M. Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte Multilayers. Biomacromolecules. 2003;4:1564-71. [49] Zhang J, Senger B, Vautier D, Picart C, Schaaf P, Voegel JC, et al. Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials. 2005;26:3353-61. [50] Berthelemy N, Kerdjoudj H, Gaucher C, Schaaf P, Stoltz J-F, Lacolley P, et al. Polyelectrolyte Films Boost Progenitor Cell Differentiation into Endothelium-like Monolayers. Advanced Materials. 2008;20:2674-8. [51] Mendelsohn JD, Yang SY, Hiller JA, Hochbaum AI, Rubner MF. Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films. Biomacromolecules. 2003;4:96-106. [52] Detzel CJ, Larkin AL, Rajagopalan P. Polyelectrolyte multilayers in tissue engineering. Tissue Eng Part B Rev. 2011;17:101-13. [53] Ren K, Crouzier T, Roy C, Picart C. Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation. Advanced functional materials. 2008;18:1378-89. [54] Lulevich VV, Vinogradova OI. Effect of pH and Salt on the Stiffness of Polyelectrolyte Multilayer Microcapsules. Langmuir. 2004;20:2874-8. [55] Richert L, Engler AJ, Discher DE, Picart C. Elasticity of Native and Cross-Linked Polyelectrolyte Multilayer Films. Biomacromolecules. 2004;5:1908-16. [56] Mendelsohn JD, Barrett CJ, Chan VV, Pal AJ, Mayes AM, Rubner MF. Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers. Langmuir. 2000;16:5017-23. [57] Hajicharalambous CS, Lichter J, Hix WT, Swierczewska M, Rubner MF, Rajagopalan P. Nano- and sub-micron porous polyelectrolyte multilayer assemblies: biomimetic surfaces for human corneal epithelial cells. Biomaterials. 2009;30:4029-36. [58] Richert L, Arntz Y, Schaaf P, Voegel J, Picart C. pH dependent growth of poly(-lysine)/poly(-glutamic) acid multilayer films and their cell adhesion properties. Surface Science. 2004;570:13-29. [59] Schneider A, Francius G, Obeid R, Schwinte P, Hemmerle J, Frisch Bt, et al. Polyelectrolyte Multilayers with a Tunable Young’s Modulus: Influence of Film Stiffness on Cell Adhesion. Langmuir. 2006;22:1193-200. [60] Mauser T, Dejugnat C, Sukhorukov GB. Reversible pH-Dependent Properties of Multilayer Microcapsules Made of Weak Polyelectrolytes. Macromolecular Rapid Communications. 2004;25:1781-5. [61] Hiller J, Mendelsohn JD, Rubner MF. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature materials. 2002;1:59-63. [62] Engler A, Richert L, Wong J, Picart C, Discher D. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion. Surface Science. 2004;570:142-54. [63] Elbert DL, Herbert CB, Hubbell JA. Thin Polymer Layers Formed by Polyelectrolyte Multilayer Techniques on Biological Surfaces. Langmuir. 1999;15:5355-62. [64] Thompson MT, Berg MC, Tobias IS, Rubner MF, Van Vliet KJ. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials. 2005;26:6836-45. [65] Nolte AJ, Cohen RE, Rubner MF. A Two-Plate Buckling Technique for Thin Film Modulus Measurements: Applications to Polyelectrolyte Multilayers. Macromolecules. 2006;39:4841-7. [66] Wu G, Zhang X. Unconventional Layer-by-Layer Assembly for Functional Organic Thin Films. Polymer Thin Films. 2010:143-60. [67] LVOV Y, Decher G, Sukhorukov G. Assembly of Thin Films by Means of Successive Deposition of Alternate Layers of DNA and Poly(ally1amine). Macromolecules. 1993;26:5396-9. [68] Chun Ki W, Yoo Hyuk S, Yoon Jun J, Park Tae G. Biodegradable PLGA Microcarriers for Injectable Delivery of Chondrocytes: Effect of Surface Modification on Cell Attachment and Function. Biotechnology Progress. 2008;20:1797-801. [69] Hiller JA, Mendelsohn JD, Rubner MF. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature materials. 2002;1:59. [70] Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials. 2007;28:632-40. [71] Blau A, Weinl C, Mack J, Kienle S, Jung G, Ziegler C. Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films. Journal of Neuroscience Methods. 2001;112:65-73. [72] Brun NR, Christen V, Furrer G, Fent K. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio). Environ Sci Technol. 2014;48:11679-87. [73] Saigal R, Cimetta E, Tandon N, Zhou J, Langer R, Young M, et al. Electrical Stimulation via a Biocompatible Conductive Polymer Directs Retinal Progenitor Cell Differentiation. 35th Annual International Conference of the IEEE EMBS. 2013:1627-31. [74] Ou YT, Lu MS, Chiao CC. The effects of electrical stimulation on neurite outgrowth of goldfish retinal explants. Brain research. 2012;1480:22-9. [75] Kang K, Choi IS, Nam Y. A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials. 2011;32:6374-80. [76] Yasuda RTaHK. Ex Situ Chemical Determination of Free Radicals and Peroxides on Plasma Treated Surfaces. Plasmas and Polymers. 2001;7. [77] Li H, Ha CS, Kim I. Fabrication of Carbon Nanotube/SiO(2) and Carbon Nanotube/SiO(2)/Ag Nanoparticles Hybrids by Using Plasma Treatment. Nanoscale research letters. 2009;4:1384-8. [78] Yu TW, Bargmann CI. Dynamic regulation of axon guidance. Nat Neurosci. 2001. [79] Chilton JK. Molecular mechanisms of axon guidance. Developmental Biology. 2006;292:13-24. [80] Bashaw GJ, Klein R. Signaling from Axon Guidance Receptors. Cold Spring Harbor Perspectives in Biology. 2010;2:a001941. [81] Eichmann A, Noble FL, Autiero M, Carmeliet P. Guidance of vascular and neural network formation. Current Opinion in Neurobiology. 2005;15:108-15. [82] Nyberg T, Shimada A, Torimitsu K. Ion conducting polymer microelectrodes for interfacing with neural networks. J Neurosci Methods. 2007;160:16-25. [83] Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee SH. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer's disease. Lab Chip. 2015;15:141-50. [84] Gabi M, Larmagnac A, Schulte P, Vörös J. Electrically controlling cell adhesion, growth and migration. Colloids and Surfaces B: Biointerfaces. 2010;79:365-71. [85] Hsiao Y-S, Lin C-C, Hsieh H-J, Tsai S-M, Kuo C-W, Chu C-W, et al. Manipulating location, polarity, and outgrowth length of neuron-like pheochromocytoma (PC-12) cells on patterned organic electrode arrays. Lab on a Chip. 2011;11:3674-80. [86] Lu C-H, Hsiao Y-S, Kuo C-W, Chen P. Electrically tunable organic bioelectronics for spatial and temporal manipulation of neuron-like pheochromocytoma (PC-12) cells. Biochimica et Biophysica Acta (BBA) - General Subjects. 2013;1830:4321-8. [87] E B, GE. A. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: contact structures for neuron-to-electrode signal transmission (NEST). Biosens Bioelectron. 2004;19:923-31. [88] Liu H, Ito Y. Cell attachment and detachment on micropattern-immobilized poly(N-isopropylacrylamide) with gelatin. Lab Chip. 2002;2:175-8. [89] Ji Q, Jiang X, Yin J. Facile Approach to the Fabrication of a Micropattern Possessing Nanoscale Substructure. Langmuir. 2007;23:12663-8. [90] Saito T, Teraoka K, Ota K. Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior. Mater Sci Eng C Mater Biol Appl. 2015;49:256-61. [91] Jenkins PM, Laughter MR, Lee DJ, Lee YM, Freed CR, Park D. A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale research letters. 2015;10:972. [92] Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials. 2010;31:1596-603. [93] Hackelberg S, Tuck SJ, He L, Rastogi A, White C, Liu L, et al. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS One. 2017;12:e0180427. [94] Craighead HG, James CD, Turner AMP. Chemical and topographical patterning for directed cell attachment. Current Opinion in Solid State and Materials Science. 2001;5:177-84. [95] Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573-83. [96] Lu YP, Yang CH, Yeh JA, Ho FH, Ou YC, Chen CH, et al. Guidance of neural regeneration on the biomimetic nanostructured matrix. Int J Pharm. 2014;463:177-83. [97] 莊勝雄, 游士諄, 林明俊, 周祖亮. SU-8 光阻在矽晶圓基材上製作微流道面板之研究. 南亞學報.23-36. [98] Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proceedings of the National Academy of Sciences. 1992;89:7919. [99] Lei K. Review on Impedance Detection of Cellular Responses in Micro/Nano Environment. Micromachines. 2014;5:1-12. [100] Diemert S, Dolga AM, Tobaben S, Grohm J, Pfeifer S, Oexler E, et al. Impedance measurement for real time detection of neuronal cell death. J Neurosci Methods. 2012;203:69-77. [101] Hamilton TJ, Nelson NM, Sander D, Abshire P. A cell impedance sensor based on a silicon cochlea. 2009 IEEE Biomedical Circuits and Systems Conference2009. p. 117-20. [102] Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics. 1997;12:29-41. [103] Hong J, Kandasamy K, Marimuthu M, Choi CS, Kim S. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst. 2011;136:237-45. [104] Lei KF, Wu ZM, Huang CH. Impedimetric quantification of the formation process and the chemosensitivity of cancer cell colonies suspended in 3D environment. Biosensors and Bioelectronics. 2015;74:878-85. [105] Luong JHT, Habibi-Rezaei M, Meghrous J, Xiao C, Male KB, Kamen A. Monitoring Motility, Spreading, and Mortality of Adherent Insect Cells Using an Impedance Sensor. Analytical Chemistry. 2001;73:1844-8. [106] Xiao C, Lachance B, Sunahara G, Luong JHT. Assessment of Cytotoxicity Using Electric Cell−Substrate Impedance Sensing: Concentration and Time Response Function Approach. Analytical Chemistry. 2002;74:5748-53. [107] Linderholm P, Braschler T, Vannod J, Barrandon Y, Brouard M, Renaud P. Two-dimensional impedance imaging of cell migration and epithelial stratification. Lab Chip. 2006;6:1155-62. [108] Grant S, Davis F, Law KA, Barton AC, Collyer SD, Higson SPJ, et al. Label-free and reversible immunosensor based upon an ac impedance interrogation protocol. Analytica Chimica Acta. 2005;537:163-8. [109] Ma K-S, Zhou H, Zoval J, Madou M. DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy. Sensors and Actuators B: Chemical. 2006;114:58-64. [110] Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensors and Actuators B: Chemical. 2008;134:755-60. [111] Liu L, Xiao X, Lei KF, Huang C-H. Quantitative Impedimetric Monitoring of Cell Migration Under the Stimulation of Cytokine or Anti-Cancer Drug in a Microfluidic Chip. Biomicrofluidics. 2015;9:034109. [112] Lei KF, Tseng H-P, Lee C-Y, Tsang N-M. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device. Scientific reports. 2016;6:25557. [113] Lei KF, Lin B-Y, Tsang N-M. Real-time and Label-Free Impedimetric Analysis of the Formation and Drug Testing of Tumor Spheroids Formed via the Liquid Overlay Technique. RSC Advances. 2017;7:13939-46. [114] Galli R, Gritti A, Bonfanti L, Vescovi AL. Neural stem cells: an overview. Circ Res. 2003;92:598-608. [115] Wolpert L. The Triumph of the Embryo. [116] Rosser AE, Tyers P, ter Borg M, Dunnett SB, Svendsen CN. Co-expression of MAP-2 and GFAP in cells developing from rat EGF responsive precursor cells. Developmental Brain Research. 1997;98:291-5. [117] Nemani K, Kwon J, Trivedi K, Hu W, Lee JB, Gimi B. Biofriendly bonding processes for nanoporous implantable SU-8 microcapsules for encapsulated cell therapy. J Microencapsul. 2011;28:771-82. [118] Lee KY. Micromachining applications of a high resolution ultrathick photoresist. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1995;13:3012. [119] Che-Hsin L, Gwo-Bin L, Bao-Wen C, Guan-Liang C. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. Journal of Micromechanics and Microengineering. 2002;12:590. [120] Papautsky I, Westwood S, Gojova A, Kuo B, Barakat AI, Gray BL, et al. Initial investigation of SU-8 photopolymer as a material for noninvasive endothelial cell research platforms. Proc of SPIE. 2007;6465:64650S-S-8. [121] Dey PK, Pramanick B, RaviShankar A, Ganguly P, Das S. Microstructuring of SU-8 Resist for MEMs and Bio-applications. INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS. 2010;3:118-29. [122] Chuang Y-J, Tseng F-G, Cheng J-H, Lin W-K. A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists. Sensors and Actuators A. 2003;103:64-9. [123] Abgrall P, Conedera V, Camon H, Gue AM, Nguyen NT. SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis. 2007;28:4539-51. [124] Persano L, Rampazzo E, Basso G, Viola G. Glioblastoma cancer stem cells: Role of the microenvironment and therapeutic targeting. Biochemical Pharmacology. 2013;85:612-22. [125] Onesto V, Cosentino C, Di Fabrizio E, Cesarelli M, Amato F, Gentile F. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression. BioMed Research International. 2016;2016:12. [126] Lorincz MT. Optimized Neuronal Differentiation of Murine Embryonic Stem Cells. In: Turksen K, editor. Embryonic Stem Cell Protocols: Volume 2: Differentiation Models. Totowa, NJ: Humana Press; 2006. p. 55-69. [127] Cintora P, Arikkath J, Kandel M, Popescu G, Best‐Popescu C. Cell density modulates intracellular mass transport in neural networks. Cytometry Part A. 2017;91:503-9. [128] Huang CJ, Su YK, Wu SL. The effect of solvent on the etching of ITO electrode. Materials Chemistry and Physics. 2004;84:146-50. [129] Chang K-A, Kim JW, Kim Ja, Lee S, Kim S, Suh WH, et al. Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells. PLOS ONE. 2011;6:e18738. [130] Kim IS, Song YM, Cho TH, Pan H, Lee TH, Kim SJ, et al. Biphasic Electrical Targeting Plays a Significant Role in Schwann Cell Activation. Tissue Engineering Part A. 2011;17:1327-40. [131] Huang J, Ye Z, Hu X, Lu L, Luo Z. Electrical stimulation induces calcium‐dependent release of NGF from cultured Schwann cells. Glia. 2009;58:622-31. [132] Delle Monache S, Alessandro R, Iorio R, Gualtieri G, Colonna R. Extremely low frequency electromagnetic fields (ELF‐EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics. 2008;29:640-8. [133] Yoon CW, Jung H, Goo K, Moon S, Koo KM, Lee NS, et al. Low-Intensity Ultrasound Modulates Ca2+ Dynamics in Human Mesenchymal Stem Cells via Connexin 43 Hemichannel. Annals of Biomedical Engineering. 2017. [134] Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nature Reviews Cancer. 2008;8:361. [135] Liu X, Wang G, Pu H, Jing H. Abnormal intracellular calcium homeostasis associated with vulnerability in the nerve cells from heroin-dependent rat. Brain Research. 2014;1572:40-9. [136] Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 2013;7:2-13. [137] Lu R, He Q, Wang J. TRPC Channels and Alzheimer’s Disease. In: Wang Y, editor. Transient Receptor Potential Canonical Channels and Brain Diseases. Dordrecht: Springer Netherlands; 2017. p. 73-83. [138] Sukumaran P, Sun Y, Schaar A, Selvaraj S, Singh BB. TRPC Channels and Parkinson’s Disease. In: Wang Y, editor. Transient Receptor Potential Canonical Channels and Brain Diseases. Dordrecht: Springer Netherlands; 2017. p. 85-94. [139] Zhao R, Liu L, Rittenhouse AR. Ca2+ influx through both L- and N-type Ca2+ channels increases c-fos expression by electrical stimulation of sympathetic neurons. Eur J Neurosci. 2007;25:1127-35.
|