(100.26.179.251) 您好!臺灣時間:2021/04/15 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張秋月
研究生(外文):CHANG, CHIU-YUEH
論文名稱:甲基丙烯酸羥基乙酯混摻水膠之製備
論文名稱(外文):Preparation and Characterization of Hydroxyethyl Methacrylate Blending Hydrogels
指導教授:饒文娟
指導教授(外文):JAO, WIN-CHUN
口試委員:楊銘乾饒文娟胡寶元
口試委員(外文):YANG, MING-CHIENJAO, WIN-CHUNHU BAU-YUAN
口試日期:2018-06-30
學位類別:碩士
校院名稱:中華科技大學
系所名稱:健康科技研究所在職專班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:甲基丙烯酸羥基乙酯Pluronic F127親水性抗蛋白質隱形眼鏡
外文關鍵詞:HEMAPluronic F127hydrophilicityanti-proteincontact lenses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本文以甲基丙烯酸羥基乙酯(Hydroxylethyl methacrylate, HEMA)以及親水性抗蛋白高分子Pluronic F127進行混摻,再加入diethoxy acetophenone (DEAP) 光起始劑以及交聯劑ethylene glycol dimethacrylate (EGDMA),以紫外線起始法製備HEMA-F127混摻水膠,以提高HEMA水膠之親水性以及增加其抗蛋白吸附性。
由實驗結果得知,HEMA- F127混摻水膠的含水率隨著Pluronic F127的含量增加而上升,而接觸角也因Pluronic F127的加入而降低,因而提高水膠的親水性。此外,氧穿透率(oxygen premeability,Dk )也相對增加。相反地,其機械強力方面卻會隨著Pluronic F127的增加而有下降的趨勢。HEMA-F127混摻的透光度在可見光範圍可達94%以上。而在蛋白質吸附隨著Pluronic F127的含量增加,而明顯的降低。在細胞毒性方面,以ISO10993-5的判定上屬於0-1 級,所以其細胞毒性是可接受的。針對這些特性,未來可以利用此水膠來作為隱形眼鏡及眼科材料之運用。

In this study, to increase hydrophilicity and anti-protein adsorption of hydrogels, hydroxyethyl methacrylate (HEMA) was mixed with Pluronic F127 and polymerized via ultraviolet (UV) initiation with diethoxy acetophenone (DEAP) as the initiator and ethylene glycol dimethacrylate (EGDMA) as the crossliking agent.
The results show that the increase in Pluronic F127 content led to the decrease of water contact angle and the increase of equilibrium water content (EWC) for the blending hydrogels. Moreover, the oxygen transmittance (Dk) increased with the increase of EWC. The mechanical strength of the hydrogel also decreased with the Pluronic F127 content. The HEMA-F127 blending hydrogels exhibited high optical transmittance (over 94%). When the F127 content reached 4%, the apparent protein adsorption amount decreased to about 75% of that of HEMA control. Thus the HEMA-F127 blending hydrogels exhibited the ability to resist protein adsorption. Furthermore, these hydrogel were non-cytotoxic through in vitro L929 fibroblasts proliferation assay. Overall results demonstrated that the HEMA-F127 blending hydrogels exhibited relatively high oxygen permeability, hydrophilicity, optical transparency, and anit-protein adsorption, therefore would be applicable as contact lenses material.

目次

Abstract i
摘要 ii
目次 iii
表目錄 v
圖目錄 vi
第一章 前言 1
第一節 研究背景 1
第二節 研究目的 2
第二章 文獻回顧 3
第一節 水膠的定義 3
第二節 水膠之分類 3
第三節 水膠合成的方式 8
第四節 隱形眼鏡的介紹 10
第五節 隱形眼鏡的分類 13
第六節 隱形眼鏡材料的特殊性質 17
第七節 紫外線的介紹 21
第八節 隱形眼鏡之蛋白質吸附 23
第九節 生醫材料與細胞之交互作用 26
第十節 紫外光硬化交聯原理 27
第三章 材料與方法 29
第一節 實驗藥品 29
第二節 實驗儀器 30
第三節 實驗流程 31
第四節 實驗方法 32
第四章 實驗結果與討論 42
第一節 物理性質分析 42
第二節 生物相容性分析 51
第五章 結論 53
第六章 參考文獻 54

Alvarez-Rivera, F. Concheiro, A. Alvarez-Lorenzo, C. (2018) Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. European Journal of Pharmaceutics and Biopharmaceutics, 122:126-136.
Bozukova, D. Pagnoulle, C. De Pauw-Gillet, M. C. Desbief, S. Lazzaroni, R. Ruth, N. Jérôme, C. (2007) Improved performances of intraocular lenses by poly (ethylene glycol) chemical coatings. Biomacromolecules, 8:2379-2387.
Chen, H. Brook, M. A. Chen, Y. Sheardown, H. 2005. Surface properties of PEO-silicone composites: reducing protein adsorption. Journal of Biomaterials Science, Polymer Edition, 16:531-548.
Efron, N. Morgan, P. B. Cameron, I. D. Brennan, N. A. Goodwin, M. (2007) Oxygen permeability and water content of silicone hydrogel contact lens materials. Optometry and Vision Science, 84:E328-E337.
Filipecka, K. Miedziński, R. Sitarz, M. Filipecki, J. Makowska-Janusik, M. (2017) Optical and vibrational properties of phosphorylcholine-based contact lenses—Experimental and theoretical investigations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176:83-90.
González‐Méijome, J. M. López‐Alemany, A. Almeida, J. B. Parafita, M. A. Refojo, M. F. (2006) Microscopic observation of unworn siloxane-hydrogel soft contact lenses by atomic force microscopy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 76:412-418.
Guillon, M. Maissa, C. (2007) Use of silicone hydrogel material for daily wear. Contact Lens and Anterior Eye, 30(1), 5-10.
Hsu, K. H. Carbia, B. E. Plummer, C. Chauhan, A. (2015) Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. European Journal of Pharmaceutics and Biopharmaceutics, 94, 312-321.
Jones, L. (2007) A new silicone hydrogel lens comes to market. Contact Lens Spectrum, 22:23.
Jones, L. Dumbleton, K. (2002) Silicone hydrogel lenses: Fitting procedures and in-practice protocols for continuous wear lenses. Optician, 223:37-45.
Jones, L. Subbaraman, L. N. Rogers, R. Dumbleton, K. (2006) Surface treatment, wetting and modulus of silicone hydrogels. Optician, 232:28-34.
Lin, C. H. Jao, W. C. Yeh, Y. H. Lin, W. C. Yang, M. C. (2009) Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS-polyurethane-HEMA hydrogel. Colloids and Surfaces B: Biointerfaces, 70:132-141.
Lin, C. H. Lin, W. C. Yang, M. C. (2009) Fabrication and characterization of ophthalmically compatible hydrogels composed of poly (dimethyl siloxane-urethane)/Pluronic F127. Colloids and Surfaces B: Biointerfaces, 71:36-44.
Lin, C. H. Yeh, Y. H. Lin, W. C. Yang, M. C. (2014) Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids and Surfaces B: Biointerfaces, 123:986-994.
Lin, W. C. Liu, T. Y. Yang, M. C. (2004) Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials, 25:1947-1957.
Lin, W. C. Tseng, C. H. Yang, M. C. (2005) In‐Vitro Hemocompatibility Evaluation of a Thermoplastic Polyurethane Membrane with Surface‐Immobilized Water‐Soluble Chitosan and Heparin. Macromolecular bioscience, 5:1013-1021.
Lin, W. C. Yu, D. G. Yang, M. C. (2005) Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids and Surfaces B: Biointerfaces, 44:82-92.
Liu, P. Xie, Z. Zheng, F. Zhao, Y. Gu, Z. (2016) Surfactant-free HEMA crystal colloidal paint for structural color contact lens. Journal of Materials Chemistry B, 4:5222-5227.
Liu, T. Y. Lin, W. C. Huang, L. Y. Chen, S. Y. Yang, M. C. (2005) Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials, 26:1437-1444.
Maldonado-Codina, C. Morgan, P. B. (2007) In vitro water wettability of silicone hydrogel contact lenses determined using the sessile drop and captive bubble techniques. Journal of biomedical materials research Part A, 83:496-502.
Maulvi, F. A. Shaikh, A. A. Lakdawala, D. H. Desai, A. R. Pandya, M. M. Singhania, S. S. Shah, D. O. (2017) Design and optimization of a novel implantation technology in contact lenses for the treatment of dry eye syndrome: In vitro and in vivo evaluation. Acta biomaterialia, 53:211-221.
Morgan, P. B. Chamberlain, P. Moody, K. Maldonado-Codina, C. (2013) Ocular physiology and comfort in neophyte subjects fitted with daily disposable silicone hydrogel contact lenses. Contact Lens and Anterior Eye, 36:118-125.
Nicolson, P. C. Vogt, J. (2001) Soft contact lens polymers: an evolution. Biomaterials, 22:3273-3283.
Papandreou, I. Ristau, T. Sadda, S. R. Kirchhof, B. Liakopoulos, S. (2012) Prognostic Factors For Visual Acuity Outcome After Pars Plana Vitrectomy And Peeling For Idiopathic Epiretinal Membranes. Investigative Ophthalmology & Visual Science, 53:1177-1177.
Paradiso, P. Chu, V. Santos, L. Serro, A. P. Colaço, R. Saramago, B. (2015) Effect of plasma treatment on the performance of two drug‐loaded hydrogel formulations for therapeutic contact lenses. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103:1059-1068.
Paradiso, P. Colaço, R. Mata, J. L. G. Krastev, R. Saramago, B. Serro, A. P. (2017) Drug release from liposome coated hydrogels for soft contact lenses: the blinking and temperature effect. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105:1799-1807.
Pek, Y. S. Wu, H. Chow, E. P. Ying, J. Y. (2016) Transparent nanostructured photochromic UV-blocking soft contact lenses. Nanomedicine, 11:1599-1610.
Pozuelo, J. Compañ, V. González-Méijome, J. M. González, M. Mollá, S. (2014) Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. Journal of Membrane Science, 452:62-72.
Ren, K. Wang, Y. Ji, J., Lin, Q. Shen, J. (2005) Construction and deconstruction of PLL/DNA multilayered films for DNA delivery: Effect of ionic strength. Colloids and Surfaces B: Biointerfaces, 46:63-69.
Saini, A. Rapuano, C. J. Laibson, P. R. Cohen, E. J. Hammersmith, K. M. (2013) Episodes of microbial keratitis with therapeutic silicone hydrogel bandage soft contact lenses. Eye & contact lens, 39:324-328.
Szczotka-Flynn, L. Jiang, Y. Raghupathy, S. Bielefeld, R. A. Garvey, M. T. Jacobs, M. R. Debanne, S. M. (2014) Corneal inflammatory events with daily silicone hydrogel lens wear. Optometry and Vision Science, 91:3-12.
Van Beek, M. Weeks, A. Jones, L. Sheardown, H. (2008) Immobilized hyaluronic acid containing model silicone hydrogels reduce protein adsorption. Journal of Biomaterials Science, Polymer Edition, 19:1425-1436.
Vieira, A. P. Pimenta, A. F. Silva, D. Gil, M. H. Alves, P. Coimbra, P. Serro, A. P. (2017) Surface modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 120:52-62.
Ye, S. Wang, C. Liu, X. Tong, Z. (2005) Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films. Journal of controlled release, 106:319-328.
Yu, D. G. Lin, W. C. Yang, M. C. (2007) Surface modification of poly (L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer. Bioconjugate chemistry, 18:1521-1529.
Yu, D. G.Jou, C. H. Lin, W. C. Yang, M. C. (2007) Surface modification of poly (tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer. Colloids and Surfaces B: Biointerfaces, 54:222-229.
Yue, Y. Han, J. Han, G. French, A. D. Qi, Y. Wu, Q. (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization. Carbohydrate polymers, 147:155-164.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔