跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖盛峰
研究生(外文):LIAO, SHENG-FENG
論文名稱:鳥類影像檢索系統
論文名稱(外文):Content-based bird image retrieval system
指導教授:石昭玲
指導教授(外文):SHIH, JAU-LING
口試委員:石昭玲李建興韓欽銓
口試委員(外文):SHIH, JAU-LINGLEE, CHANG-HSINGHan, CHIN-CHUAN
口試日期:2018-07-16
學位類別:碩士
校院名稱:中華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:36
中文關鍵詞:鳥類影像檢索色彩直方圖色彩結構尺度不變特徵轉換
外文關鍵詞:bird image retrievalcolor histogramcolor structurescale invariant feature transform(SIFT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了基於內容的鳥類影像檢索系統(Content-based bird image retrieval system)。首先將輸入的鳥類影像做鳥類區域的偵測,去除因為背景而產生的不必要資訊,接著將偵測到的鳥類區域進行大小正規化,確保影像在進行特徵擷取與比對時,不會因為原始影像解析度的不同或拍攝距離遠近而產生的錯誤資訊,再來將影像進行色彩量化以減少顏色的複雜度。針對這些做完前處理的鳥類影像,為了解其顏色資訊,我們擷取了局部的色彩直方圖(Color Histogram)與色彩結構特徵(Color Structure),接著為了解影像局部的紋理,我們擷取了尺度不變特徵轉換(Scale-invariant feature transform, SIFT),然後將擷取到的局部特徵做詞彙的訓練去建立編碼簿(Codebook)做為統計詞袋(Bag of Words, BoW)特徵向量直方圖的依據,最後為了使特徵向量在空間上有位置的資訊,將觀察到鳥類常有的習性與前處理後影像的特性,在統計特徵直方圖時做了空間上的安排。而在檢索的部份,利用統計出的特徵直方圖在資料庫中找出與輸入影像相似度較相近的鳥類影像回饋給使用者。
In this paper, we will propose a content-based bird image retrieval system. It consists of two phases: feature extraction and bird retrieval. For bird region, the color histogram, color structure, and scale invariant feature transform(SIFT) are extracted as the features vector. Based on these feature vectors, the similar bird can be retrieved.
第一章 簡介 1
1.1 研究動機 1
1.2 相關文獻 2
第二章 鳥類影像檢索系統 5
2.1 前處理 6
2.1.1 鳥類區域偵測 6
2.1.2 鳥類區域大小正規化 10
2.1.3 色彩量化 10
2.2 特徵擷取 16
2.2.1 色彩直方圖特徵(Color Histogram) 17
2.2.2 色彩結構特徵(Color Structure) 18
2.2.3 尺度不變特徵轉換(Scale Invariant Feature Transform, SIFT) 19
2.2.4 建立編碼簿(Code Book) 20
2.2.5 統計Bag-of-Words(BoW)特徵直方圖 21
第三章 實驗結果 22
3.1 影像資料庫 22
3.2 檢索結果 24
第四章 結論 32
參考文獻 33


B. Yao, G. Bradski, and L. Fei-Fei, “A Codebook-Free and Annotation-Free Approach for Fine-Grained Image Categorization,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 3466-3473, 2012.

S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lepetit, “Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes,” IEEE Conference on Computer Vision, pp. 858-865, 2011.

X. Zhou, K. Yu, T. Zhang, and T. S. Huang, “Image classification using super-vector coding of local image descriptors,” European conference on computer vision, pp. 141-154, 2010.

X. Zhang, H. Xiong, W. Zhou, and Q. Tian, “Fused one-vs-all features with semantic alignments for fine-grained visual categorization,” IEEE Transactions on Image Processing, Vol. 25, No. 2, 2016.

J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and A. W. M. Smeulders, “Selective Search for Object Recognition,” International Journal of Computer Vision, Vol. 104, No. 2, pp.154-171, 2013.

Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 11, pp. 1222-1239, 2001.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, 2004.

N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 886-893, 2005.

N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based R-CNNs for fine-grained category detection,” European conference on computer vision, pp. 834-849, 2014.

T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-SVMs for object detection and beyond,” IEEE Conference on Computer Vision, pp. 89-96, 2011.

X. Feng, Y. Wang, and B.D. Liu, “Class Specific Centralized Dictionary Learning based Kernel Collaborative Representation for Fine-grained Image Classification,” IEEE Conference on Signal Processing, pp. 1077-1082, 2016.

S. Maji, A. C. Berg, and J. Malik, “Classification using intersection kernel support vector machines is efficient,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.

B. Gecer, G. Azzopardi, and N. Petkov, “Color-blob-based COSFIRE filters for object recognition,” Image and Vision Computing, Vol. 57, pp. 165-174, 2017.

G. Azzopardi, and N. Azzopardi, “Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 2, 2013.

C. C. Chang, and C. J. Lin, “LIBSVM: a library for support vector machines,” ACM transactions on intelligent systems and technology, Vol. 2, No. 3, 2011.

X. Cao, H. Zhang, X. Guo, S. Liu, and X. Chen, “Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,” European Conference on Computer Vision, pp. 569-583, 2014.

T. Joachims, “Optimizing search engines using clickthrough data,” ACM SIGKDD conference on Knowledge discovery and data mining, pp. 133-142, 2002.

X. HU, H. WU, Y. ZHANG, and Lei SUN, “Flower Image Retrieval Based on Saliency Map,” International Symposium on Computer, Consumer and Control, pp.304-307, 2014.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysia,” IEEE Transactions on pattern analysis and machine intelligence, Vol. 20, No. 11, 1998.

T. Ojala, M. Pietikaninen, and D. Harwood, “A Comparative Study of Texture Measures with Classification Based on Feature Distribution,” Pattern Recognition, Vol. 29, No. 1, pp.51-59, 1996.

L. Li, and Y. Qiao, “ Flower Image Retrieval with Category Attributes,” IEEE Conference on Information Science and Technology, pp. 805-808, 2014.

T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on pattern analysis and machine intelligence, Vol. 24, No. 7, 2002.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories”, IEEE computer society conference on Computer vision and pattern recognition , Vol. 2, pp. 2169-2178, 2006.

G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization with bags of keypoints,” European Conference on Computer Vision on Workshop on statistical learning in computer vision, Vol. 1, No. 1-22, pp. 1-2, 2004.

C. Aytekin, S. Kiranyaz, and M. Gabbouj, “Automatic Object Segmentation by Quantum Cuts,” IEEE Conference on Pattern Recognition, pp. 112-117, 2014.

H. F. Yang, K. Lin, and C. S. Chen, “Cross-batch Reference Learning for Deep Classification and Retrieval,” ACM Conference on Multimedia. pp. 1237-1246, 2016.

Y. H. Kuo, and W. H. Hsu, “Feature Learning with Rank-Based Candidate Selection for Product Search,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 298-307, 2017.

Flickr: Find your inspiration.:https://www.flickr.com/

Instagram:https://www.instagram.com/

台灣地區野鳥集-鳥類- Natural Island, Yea! Taiwan:http://sjl.csie.chu.edu.tw/birds/index.php

Caltech-UCSD Birds-200-2011:http://www.vision.caltech.edu/visipedia/CUB-200-2011.html



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top