跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李湘萍
研究生(外文):Hsiang-Ping Lee
論文名稱:丹參活性成分丹參酮IIA對於腫瘤血管新生之作用及機轉探討
論文名稱(外文):The effects and mechanisms of Danshen (Salvia miltiorrhiza) active ingredient Tanshinone IIA for tumor angiogenesis
指導教授:馮逸卿
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:中醫學系博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:丹參酮IIA內皮前驅細胞血管新生血管內皮生長因子
外文關鍵詞:Endothelial progenitor cellAngiogenesisTanshinone IIAVEGF-A
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
逐漸增加的證據報導骨髓衍生的內皮前驅細胞(endothelial progenitor cells, EPCs)調控血管新生、產後血管生成以及腫瘤轉移。一般認為瞭解天然產物的分子標的及藥理功能對於藥物發展是非常重要的。丹參酮IIA是從丹參(Salvia miltiorrhiza)分離出來的一個主要之二萜醌化合物,並且廣泛的使用於傳統中醫(traditional Chinese medicine, TCM)。雖然證據中指出丹參酮IIA能減少人類臍靜脈內皮細胞之血管新生作用,它在內皮前驅細胞的作用大部分卻是未知的。在本論文中,我們發現在無細胞毒性濃度下,丹參酮IIA以濃度依賴性而減少血管內皮生長因子(vascular endothelial growth factor, VEGF)所促進之人類內皮前驅細胞移行及血管生成。而在雞胚絨毛尿囊膜體內試驗中丹參酮IIA同時也抑制血管內皮生長因子誘導之血管新生。此外於小鼠動物模式中,我們觀察基質膠體 (matrigel plugs)也發現丹參酮IIA能抑制血管新生及內皮前驅細胞之表現。此外,丹參酮IIA阻斷血管內皮生長因子誘導之PLC、Akt及JNK磷酸化,而非p38及ERK活化。總結以上,我們的結果是首次驗證在體外及體內實驗中,丹參酮IIA減少內皮前驅細胞血管新生作用。丹參酮IIA顯示了在腫瘤抗血管新生療法及血管新生相關病理中之高度潛力。
Accumulating evidences report that bone marrow-derived endothelial progenitor cells (EPCs) regulate angiogenesis, postnatal neovascularization and tumor metastasis. It has been suggested that understanding the molecular targets and pharmacological functions of natural products is important for drug discovery. Tanshinone IIA is a major diterpene quinone compound isolated from Danshen (Salvia miltiorrhiza), and is widely used in traditional Chinese medicine (TCM). Although evidence indicates that tanshinone IIA reduces angiogenic function in human umbilical vein endothelial cells. However, the anti-angiogenic activity of tanshinone IIA on human EPCs has not been addressed. Here, we found that tanshinone IIA dramatically suppressed vascular endothelial growth factor (VEGF) promoted migration and tube formation of human EPCs without cytotoxic effects. Tanshinone IIA also markedly inhibits VEGF-induced angiogenesis in the chick embryo chorioallantoic membrane (CAM) model. Importantly, Tanshinone IIA significantly attenuated microvessel formation and the expression of specific EPCs marker in Matrigel plug-implanted mouse model. Mechanistic investigations demonstrated that tanshinone IIA inhibits EPCs angiogenesis through the PLC, Akt and JNK signaling pathways. Taken together, our report is the first to reveal that tanshinone IIA reduces EPC angiogenesis both in vitro and in vivo. Tanshinone IIA is a promising natural product worthy of further development for the treatment of cancer and other angiogenesis-related pathologies.
目次
第一章、前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章、文獻探討 3
2.1 腫瘤轉移 3
2.2 血管新生與腫瘤轉移 6
2.3 血管新生相關因子 10
2.4 血管內皮生長因子 13
2.5 內皮前驅細胞 15
2.6 傳統醫學對腫瘤的認識 18
2.7 傳統醫學治療腫瘤的概況 22
2.8 瘀血與腫瘤的關聯 27
2.9 中藥丹參及其萃取物 30
第三章、材料與方法 35
3.1 實驗材料 35
3.1.1 實驗細胞株 35
3.1.2 實驗儀器 35
3.1.3 實驗試劑 36
3.2 實驗方法 38
3.2.1 細胞計數 38
3.2.2 細胞存活率分析 38
3.2.3 細胞毒性測定 39
3.2.4 西方墨點法 39
3.2.5 細胞移行分析 40
3.2.6 類血管生成試驗 40
3.2.7 雞胚絨毛尿囊膜模式 41
3.2.8 基質膠體實驗 41
3.2.9 免疫組織化學染色 42
3.2.10 血紅素蛋白分析 43
3.2.11 統計分析方法 43
第四章、結果 44
4.1 丹參酮IIA在人類內皮前驅細胞並無細胞毒性 44
4.2 丹參酮IIA抑制血管內皮生長因子誘導之內皮前驅細胞 移行及血管生成 46
4.3 丹參酮IIA抑制血管內皮生長因子誘導之內皮前驅細胞 PLCΓ及AKT活化 47
4.4 丹參酮IIA抑制血管內皮生長因子誘導之內皮前驅細胞 JNK活化而非ERK及P38 50
4.5 丹參酮IIA減少活體內實驗之血管新生作用 52
第五章、討論 55
第六章、結論 58
參考文獻 59
1.Folkman J, Angiogenesis. Annual review of medicine, 2006. 57: p. 1-18.
2.Carmeliet P and Jain RK, Angiogenesis in cancer and other diseases. Nature, 2000. 407(6801): p. 249-57.
3.Jain RK, Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer cell, 2014. 26(5): p. 605-22.
4.Chang LC and Yu YL, Dietary components as epigenetic-regulating agents against cancer. BioMedicine, 2016. 6(1): p. 2.
5.Su CM, Huang CY, and Tang CH, Characteristics of resistin in rheumatoid arthritis angiogenesis. Biomarkers in medicine, 2016. 10(6): p. 651-60.
6.Chung AS, Lee J, and Ferrara N, Targeting the tumour vasculature: insights from physiological angiogenesis. Nature reviews. Cancer, 2010. 10(7): p. 505-14.
7.Simone V, Brunetti O, Lupo L, Testini M, Maiorano E, Simone M, Longo V, Rolfo C, Peeters M, Scarpa A, Azzariti A, Russo A, Ribatti D, and Silvestris N, Targeting Angiogenesis in Biliary Tract Cancers: An Open Option. International journal of molecular sciences, 2017. 18(2).
8.Petrovic N, Targeting Angiogenesis in Cancer Treatments: Where do we Stand? Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques, 2016. 19(2): p. 226-38.
9.Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, and Isner JM, Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation research, 1999. 85(3): p. 221-8.
10.Yoder MC, Human endothelial progenitor cells. Cold Spring Harbor perspectives in medicine, 2012. 2(7): p. a006692.
11.Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, and Lengauer C, Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature medicine, 2005. 11(3): p. 261-2.
12.Jain RK and Carmeliet P, SnapShot: Tumor angiogenesis. Cell, 2012. 149(6): p. 1408-1408 e1.
13.Miao ZH, Feng JM, and Ding J, Newly discovered angiogenesis inhibitors and their mechanisms of action. Acta pharmacologica Sinica, 2012. 33(9): p. 1103-11.
14.Wang YQ and Miao ZH, Marine-derived angiogenesis inhibitors for cancer therapy. Marine drugs, 2013. 11(3): p. 903-33.
15.Su CM, Wang SW, Lee TH, Tzeng WP, Hsiao CJ, Liu SC, and Tang CH, Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells. Toxicology and applied pharmacology, 2013. 272(2): p. 335-44.
16.Wu WY and Wang YP, Pharmacological actions and therapeutic applications of Salvia miltiorrhiza depside salt and its active components. Acta pharmacologica Sinica, 2012. 33(9): p. 1119-30.
17.Padma VV, An overview of targeted cancer therapy. BioMedicine, 2015. 5(4): p. 19.
18.Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, and Lu J, Tanshinones: sources, pharmacokinetics and anti-cancer activities. International journal of molecular sciences, 2012. 13(10): p. 13621-66.
19.Fan GW, Gao XM, Wang H, Zhu Y, Zhang J, Hu LM, Su YF, Kang LY, and Zhang BL, The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. The Journal of steroid biochemistry and molecular biology, 2009. 113(3-5): p. 275-80.
20.Chang CC, Chu CF, Wang CN, Wu HT, Bi KW, Pang JH, and Huang ST, The anti-atherosclerotic effect of tanshinone IIA is associated with the inhibition of TNF-alpha-induced VCAM-1, ICAM-1 and CX3CL1 expression. Phytomedicine : international journal of phytotherapy and phytopharmacology, 2014. 21(3): p. 207-16.
21.Wang Y, Li JX, Wang YQ, and Miao ZH, Tanshinone I inhibits tumor angiogenesis by reducing Stat3 phosphorylation at Tyr705 and hypoxia-induced HIF-1alpha accumulation in both endothelial and tumor cells. Oncotarget, 2015. 6(18): p. 16031-42.
22.Xing Y, Tu J, Zheng L, Guo L, and Xi T, Anti-angiogenic effect of tanshinone IIA involves inhibition of the VEGF/VEGFR2 pathway in vascular endothelial cells. Oncology reports, 2015. 33(1): p. 163-70.
23.Paget S, The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev, 1989. 8(2): p. 98-101.
24.Ewing J, Neoplastic diseases; a treatise on tumors. 1922: Philadelphia London, W. B. Saunders company.
25.Hart IR and Fidler IJ, Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res, 1980. 40(7): p. 2281-7.
26.Fidler IJ, The pathogenesis of cancer metastasis: the ''seed and soil'' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.
27.Doi Y, Kudo H, Nishino T, and Fujimoto S, [Vasculogenesis and angiogenesis]. J UOEH, 2003. 25(4): p. 409-17.
28.Peak C.W. CL, Singh A., Gaharwar A.K., Microscale Technologies for Cell Engineering. Microscale Technologies for Engineering Complex Tissue Structures. 2016: Springer, Cham.
29.Goldmann E, The Growth of Malignant Disease in Man and the Lower Animals, with special reference to the Vascular System. Proc R Soc Med, 1908. 1(Surg Sect): p. 1-13.
30.Greenblatt M and Shubi P, Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst, 1968. 41(1): p. 111-24.
31.Folkman J, Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6.
32.Bouck N, Stellmach V, and Hsu SC, How tumors become angiogenic. Adv Cancer Res, 1996. 69: p. 135-74.
33.Bergers G and Benjamin LE, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10.
34.Gasparini G, Longo R, Toi M, and Ferrara N, Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol, 2005. 2(11): p. 562-77.
35.Ferrara N, VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer, 2002. 2(10): p. 795-803.
36.Goel HL and Mercurio AM, VEGF targets the tumour cell. Nature reviews. Cancer, 2013. 13(12): p. 871-82.
37.Keating AM and Jacobs DS, Anti-VEGF Treatment of Corneal Neovascularization. The ocular surface, 2011. 9(4): p. 227-37.
38.Ferrara N, Mass RD, Campa C, and Kim R, Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med, 2007. 58: p. 491-504.
39.Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, and Nagy A, Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996. 380(6573): p. 435-9.
40.Ferrara N, Hillan KJ, Gerber HP, and Novotny W, Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov, 2004. 3(5): p. 391-400.
41.Bhat TA, Nambiar D, Tailor D, Pal A, Agarwal R, and Singh RP, Acacetin inhibits in vitro and in vivo angiogenesis and downregulates Stat signaling and VEGF expression. Cancer prevention research, 2013. 6(10): p. 1128-39.
42.Thelen JJ and Miernyk JA, The proteomic future: where mass spectrometry should be taking us. The Biochemical journal, 2012. 444(2): p. 169-81.
43.Hansen W, Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, Albert J, Sparwasser T, Sakaguchi S, Westendorf AM, Schadendorf D, Buer J, and Helfrich I, Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. The Journal of experimental medicine, 2012. 209(11): p. 2001-16.
44.Giordano G, Febbraro A, Venditti M, Campidoglio S, Olivieri N, Raieta K, Parcesepe P, Imbriani GC, Remo A, and Pancione M, Targeting angiogenesis and tumor microenvironment in metastatic colorectal cancer: role of aflibercept. Gastroenterol Res Pract, 2014. 2014: p. 526178.
45.Bates DO, Vascular endothelial growth factors and vascular permeability. Cardiovasc Res, 2010. 87(2): p. 262-71.
46.Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M, Meyer-Schaller N, Cornille K, Hopfer U, Bentires-Alj M, and Christofori G, VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res, 2014. 74(5): p. 1566-75.
47.Asahara T and Kawamoto A, Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol, 2004. 287(3): p. C572-9.
48.Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T, Witzenbichler B, Schatteman G, and Isner JM, Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964-7.
49.Hristov M and Weber C, Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med, 2004. 8(4): p. 498-508.
50.Rafii S and Lyden D, Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med, 2003. 9(6): p. 702-12.
51.Hristov M, Erl W, and Weber PC, Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med, 2003. 13(5): p. 201-6.
52.Stoll BR, Migliorini C, Kadambi A, Munn LL, and Jain RK, A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood, 2003. 102(7): p. 2555-61.
53.Sieveking DP, Buckle A, Celermajer DS, and Ng MK, Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol, 2008. 51(6): p. 660-8.
54.Janic B and Arbab AS, The role and therapeutic potential of endothelial progenitor cells in tumor neovascularization. ScientificWorldJournal, 2010. 10: p. 1088-99.
55.Urbich C and Dimmeler S, Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004. 95(4): p. 343-53.
56.Li Calzi S, Neu MB, Shaw LC, Kielczewski JL, Moldovan NI, and Grant MB, EPCs and pathological angiogenesis: when good cells go bad. Microvasc Res, 2010. 79(3): p. 207-16.
57.De La Puente P, Muz B, Azab F, and Azab AK, Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res, 2013. 19(13): p. 3360-8.
58.智永山:中醫對癌症的辨證論治。中國醫藥指南 2009. 7(10): p. 1671-8194.
59.江昱寬、陳建仲、廖振羽、鄭宜哲、王人澍:癌症治療前後之中醫支持療法。台灣中醫臨床醫學雜誌 2011. 17(2): p. 87-94.
60.駱建平:癌症的中醫學病因病機及辨証論治。醫學資訊 2010. 5(9): p. 2637-2638.
61.盛夏:癌症的中醫概論。中國民族民間醫藥 2013. 22(6): p. 50-51.
62.盧秀梅、吳萬垠:中醫腫瘤的基礎理論和辨證論治發展。中國醫藥指南 2013. 11(3): p. 447-450.
63.邵波:癌症的中醫理論溯源。環球中醫藥 2008. 1: p. 19-20.
64.周岱翰:臨床中醫腫瘤學。人民衛生出版社 2003.
65.徐力:論中醫干預癌症轉移前環境。中國中醫藥資訊雜誌 2007. 14(10): p. 3-4.
66.章永紅、葉麗紅、彭海燕、章迅:論癌症治療的三大原則。南京中醫藥大學學報 2011. 27(1): p. 4-6.
67.朱敏為:癌症中醫治療用藥規律探討。江蘇中醫藥 2009. 41(5): p. 58-59.
68.劉宇龍、于雪梅、顧振東:癌症復發與轉移的病機及中醫治療探討。山東中醫雜誌 1995. 14(10).
69.黃良文、劉建民、袁淮濤:活血化瘀中藥抗腫瘤轉移作用的研究進展。中國醫藥科學 2014. 4(6): p. 37-40.
70.錢彥方:活血化瘀中藥對腫瘤形成和轉移的影響。中醫雜誌 2008. 49(10): p. 942-945.
71.王文江、孫?Z:活血化瘀防治惡性腫瘤侵襲轉移研究進展。江西中醫藥 2013. 44: p. 69-73.
72.何帥兵、張百霞、王慧慧、王耘、喬延江:基於「中藥作用機理輔助解析系統」的丹參治療心血管疾病作用機制解析。中國中藥雜誌 2015. 40(19): p. 3713-3717.
73.李向軍、範文成、李奉勤、韓月芝、葉曉紅:丹參有效成分提取的研究。中國現代中藥 2011. 13(5): p. 33-35.
74.張偉偉、陸茵:丹參抗腫瘤活性成分研究新進展。中國中藥雜誌 2010. 35(3): p. 389-392.
75.樊善繼、徐海帆:丹參酮IIA抗腫瘤作用研究進展。現代臨床醫學 2015. 41(6): p. 410-413.
76.劉薇薇、陳軍峰、肖瑩、張磊、陳萬生:丹參中主要活性成分生物合成的研究進展。世界科學技術-中醫藥現代化 2016. 18(11): p. 1891-1898.
77.莊欽、毛威:丹參多種活性成分調節血管新生機制的研究概述。浙江中醫藥大學學報 2014. 38(4): p. 506-510.
78.Wu MH, Huang CY, Lin JA, Wang SW, Peng CY, Cheng HC, and Tang CH, Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene, 2014. 33(13): p. 1725-35.
79.Yu HS, Wang SW, Chang AC, Tai HC, Yeh HI, Lin YM, and Tang CH, Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells. Biochem Pharmacol, 2014. 87(2): p. 243-53.
80.Liu JF, Chen CY, Chen HT, Chang CS, and Tang CH, BL-038, a Benzofuran Derivative, Induces Cell Apoptosis in Human Chondrosarcoma Cells through Reactive Oxygen Species/Mitochondrial Dysfunction and the Caspases Dependent Pathway. International journal of molecular sciences, 2016. 17(9).
81.Tsai CH, Tsai HC, Huang HN, Hung CH, Hsu CJ, Fong YC, Hsu HC, Huang YL, and Tang CH, Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget, 2015. 6(1): p. 258-70.
82.Chen CY, Su CM, Hsu CJ, Huang CC, Wang SW, Liu SC, Chen WC, Fuh LJ, and Tang CH, CCN1 Promotes VEGF Production in Osteoblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-126 Expression in Rheumatoid Arthritis. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 2017. 32(1): p. 34-45.
83.Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, and Martin GR, A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest., 1992. 67(4): p. 519-28.
84.Ammendola M, Leporini C, Luposella M, Sacco R, Sammarco G, Russo E, Patruno R, De Sarro G, and Ranieri G, Targeting endothelial progenitor cells in cancer as a novel biomarker and anti-angiogenic therapy. Current stem cell research & therapy, 2015. 10(2): p. 181-7.
85.Wang LH, Tsai HC, Cheng YC, Lin CY, Huang YL, Tsai CH, Xu GH, Wang SW, Fong YC, and Tang CH, CTGF promotes osteosarcoma angiogenesis by regulating miR-543/angiopoietin 2 signaling. Cancer letters, 2017. 391: p. 28-37.
86.Li TM, Liu SC, Huang YH, Huang CC, Hsu CJ, Tsai CH, Wang SW, and Tang CH, YKL-40-Induced Inhibition of miR-590-3p Promotes Interleukin-18 Expression and Angiogenesis of Endothelial Progenitor Cells. International journal of molecular sciences, 2017. 18(5).
87.Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A, and Saki N, Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci, 2015. 72(12): p. 2337-47.
88.Liao YY, Tsai HC, Chou PY, Wang SW, Chen HT, Lin YM, Chiang IP, Chang TM, Hsu SK, Chou MC, Tang CH, and Fong YC, CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells. Oncotarget, 2016. 7(4): p. 4310-25.
89.Varinska L, Gal P, Mojzisova G, Mirossay L, and Mojzis J, Soy and breast cancer: focus on angiogenesis. International journal of molecular sciences, 2015. 16(5): p. 11728-49.
90.Hsieh JY, Huang TS, Cheng SM, Lin WS, Tsai TN, Lee OK, and Wang HW, miR-146a-5p circuitry uncouples cell proliferation and migration, but not differentiation, in human mesenchymal stem cells. Nucleic acids research, 2013.
91.Bhat TA, Nambiar D, Tailor D, Pal A, Agarwal R, and Singh RP, Acacetin inhibits in vitro and in vivo angiogenesis and down-regulates Stat signaling and VEGF expression. Cancer Prev Res (Phila), 2013.
92.Ling N, Gu J, Lei Z, Li M, Zhao J, Zhang HT, and Li X, microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncology reports, 2013.
93.Cook KM and Figg WD, Angiogenesis inhibitors: current strategies and future prospects. CA: a cancer journal for clinicians, 2010. 60(4): p. 222-43.
94.Seandel M, Butler J, Lyden D, and Rafii S, A catalytic role for proangiogenic marrow-derived cells in tumor neovascularization. Cancer cell, 2008. 13(3): p. 181-3.
95.Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, and Kerbel RS, Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science, 2006. 313(5794): p. 1785-7.
96.Yuan F, Fu X, Shi H, Chen G, Dong P, and Zhang W, Induction of murine macrophage M2 polarization by cigarette smoke extract via the JAK2/STAT3 pathway. PLoS One, 2014. 9(9): p. e107063.
97.Dong Y, Morris-Natschke SL, and Lee KH, Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Natural product reports, 2011. 28(3): p. 529-42.
98.Wang Y, Yan J, Li S, Cai X, Wang W, Luo K, Huang D, and Gao J, Pharmacokinetics and tissue distribution study of tanshinone IIA after oral administration of Bushen Huoxue Qubi granules to rats with blood stasis syndrome. Pharmacogn Mag, 2014. 10(39): p. 285-91.
99.Zhang W, He H, Liu J, Wang J, Zhang S, Zhang S, and Wu Z, Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins. Biomaterials, 2013. 34(1): p. 306-19.
100.Huang ST, Huang CC, Huang WL, Lin TK, Liao PL, Wang PW, Liou CW, and Chuang JH, Tanshinone IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction. Sci Rep, 2017. 7: p. 40382.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊