跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏柏雨
研究生(外文):Bo-Yu Yan
論文名稱:馬來酸舒尼替尼新用途:抗兹卡病毒活性探討
論文名稱(外文):Novel application of Sunitinib Malate : antiviral activity against Zika virus
指導教授:林振文林振文引用關係
指導教授(外文):Cheng-Wen Lin
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:醫學檢驗生物技術學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:茲卡病毒舒尼替尼老藥新用
外文關鍵詞:ZikavirusSunitinibdrug repurposing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
兹卡病毒(Zika virus) 為蚊子媒介的黃病毒,近年爆發大規模感染,期間感染孕婦造成胎兒或新生兒罹患小腦症之比例顯著上升。目前茲卡病毒沒有疫苗預防或特效藥治療,開發抗茲卡病毒藥物為當前重要課題。AXL (受器酪胺酸激酶)為茲卡病毒共同受器之一,為開發抗茲卡病毒藥物標的之一。本論文將探討酪胺酸激酶抑制劑-馬來酸舒尼替尼(sunitinib malate)抗茲卡病毒之功效及其作用機制。首先,同時給藥試驗發現馬來酸舒尼替尼明顯濃度依賴地抑制茲卡病毒對BHK-21細胞病變。由百分之五十組織培養感染劑量試驗計算馬來酸舒尼替尼抑制感染細胞的病毒產率之百分之五十濃度(IC50)為0.0146 μM。於茲卡病毒感染 1及4小時後,再處理馬來酸舒尼替尼試驗發現其對病毒產率之IC50分別為 0.009 μM及0.052μM。Rear time PCR試驗顯示馬來酸舒尼替尼無影響感染三天後細胞內正股病毒RNA的合成,但是大量負股病毒RNA累積。另外,藉由免疫螢光分析觀察感染1或4小時候後再給藥試驗,茲卡病毒E蛋白表現程度,發現馬來酸舒尼替尼抑制E蛋白表現之IC50分別為0.202 μM及0.898 μM。在細胞內病毒顆粒試驗也發現馬來酸舒尼替尼造成細胞內有大量病毒顆粒累積,無法釋出。因此,推斷馬來酸舒尼替尼具有抑制茲卡病毒之晚期複製功效。
Zika virus is a mosquito-borne flavivirus, causing the increasing risk of the microcephaly and the other birth defect in fetuses and infants during the large outbreaks in recent years. Vaccines and antiviral agents are not yet available; developing anti-Zika virus drugs becomes an important issue on global health nowadays. AXL, a cell surface receptor tyrosine kinase, has been identified as Zika virus co-receptor, as an attractive target for developing anti-Zika virus agent. The study investigates the antiviral activity and related mechanism of a multitargeted tyrosine kinase inhibitor sunitinib malate against Zika virus. Initially, sunitinib malate significantly inhibited Zika virus-induced cytopathic effect, reducing Zika virus yield in BHK-21 cells. The TCID50 assay indicated that the IC50 value of sunitinib malate was 0.0146 μM for the virus yield reduction. Time-of-addition assay indicated that the IC50 values of sunitinib malate treatment 1 and 4 hr post-infection were 0.009 μM and 0.052 μM for the virus yield reduction, respectively. Real-time RT-PCR assay showed that sunitinib malate treatment had no effect on the synthesis of positive-strand viral RNA genomes, but prompted a large accumulation of negative-strand viral RNA genomes in infected cells. In addition, immunofluorescent staining indicated that IC50 values of sunitinib malate treatment 1 and 4 hr post-infection were 0.202 μM and 0.898 μM for the decrease of viral E protein, respectively. Intracellular virion particle assay demonstrated that sunitinib malate predominantly accumulated the large amount of infectious Zika virus particles in cytoplasm. The results revealed that a multitargeted tyrosine kinase inhibitor sunitinib malate has anti-Zika virus activity via blocking the late stage of viral replication.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 8
第一節 研究背景 8
一、 黃病毒科 8
二、 茲卡病毒發現與流行病學 10
三、 茲卡病毒基因型與生命週期 10
四、 茲卡病毒臨床症狀 11
五、 茲卡病毒治療與疫苗 12
六、 馬來酸舒尼替尼 (sunitinib malate) 13
第二節 研究目的 14
一、 實驗動機 14
二、 實驗目的 14
第二章 研究方法 14
第一節 研究設計 14
一、 抗病毒活性試驗 15
二、 抗病毒機制之探討 15
第二節 研究材料 17
一、 使用之細胞株 17
二、 使用之病毒株 18
三、 抗體&引子 18
四、 實驗儀器及藥品 19
第三節 實驗方法 20
一、 細胞存活率試驗(MTT assay) 20
二、 細胞病變抑制實驗 21
三、 流式細胞儀檢測細胞週期染色 22
四、 半數組織培養感染劑量(TCID50) 23
五、 細胞半有效濃度試驗(IC50) 23
六、 免疫螢光染色分析(IFA) 24
七、 病毒顆粒活性抑制試驗(Virucidal) 25
八、 病毒顆粒貼附能力抑制試驗(Attachment) 25
九、 對病毒作用之時間點分析(Time of addition assay) 26
十、 酵素結合免疫吸附分析法(Enzyme-linked immunosorbent assay,ELISA) 26
第三章 研究結果 28
第一節 Sunitinib對BHK-21細胞之半數細胞毒殺劑量 29
第二節 茲卡病毒效價 30
第三節Sunitinib對茲卡病毒的抗病毒能力 30
第四節 Sunitinib抗茲卡病毒機制 32
第四章 討論 37
第五章 結論與建議 40
第一節 結論 40
第二節 建議 40
參考文獻 68
參考文獻
1.Penny Clarke, a.J.S.L., a Richard A. Bowen,d Kenneth L. Tyler, Virus-Induced Transcriptional Changes in the Brain Include the Differential Expression of Genes Associated with Interferon, Apoptosis, Interleukin 17 Receptor A, and Glutamate Signaling as Well as Flavivirus-Specific Upregulation of tRNA Synthetases. mBio 2014. 5(2).
2.Yannick Simonin, D.v.R., Philippe Van de Perre, Barry Rockx, Sara Salinas, Differential virulence between Asian and African lineages of Zika virus. PLOS Neglected Tropical Diseases, 2017. 11(9).
3.Alexander T. Ciota, S.M.B., Steven D. Zink, Matthew Brecher, Dylan J. Ehrbar, Madeline N. Morrissette, Laura D. Kramer, Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence. Emerging Infectious Diseases, 2017. 23(7).
4.Linda Hueston, R.R., and Suresh Mahalingam, Enhancement of Zika Infection by Dengue Virus–Specific Antibody Is Associated With Low Levels of Antiviral Factors. Journal of Infectious Diseases, 2017. 216.
5.Margus Varjak, C.L.D., Timothy J. Mottram, Vattipally B. Sreenu, Andres Merits, Kevin Maringer, Esther Schnettler, Alain Kohl, Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLOS, 2017. 11(10).
6.Meertens L, L.A., Dejarnac O, Cipriani S, Sinigaglia L, Bonnet-Madin L, Le Charpentier T, Hafirassou ML, Zamborlini A, Cao-Lormeau VM, Coulpier M, Missé D, Jouvenet N, Tabibiazar R, Gressens P, Schwartz O, Amara A, Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses. Cell Rep, 2017. 18(2): p. 9.
7.Richard AS, S.B., Kwon YC, Zhang R, Otsuka Y, Schmitt K, Berri F, Diamond MS2, Choe H, AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. PNAS, 2017. 114(8): p. 5.
8.Eduardo Guaní-Guerra , T.S.-M., Saúl O. Lugo-Reyes , Luis M. Terán Antimicrobial peptides: General overview and clinical implications in human health and disease. Clinical Immunology, 2010. 135: p. 1-11.
9.Elena Bekerman, G.N., Ana Shulla, Russell R. Bakken, Piet Herdewijn, John M. Dye, Jennifer Brannan, and Shirit Einav Szu-Yuan Pu, and J.G. Roberto Mateo, Claude M. Nagamine, Glenn Randall,Stanley Wang, Fei Xiao, Michael S. Diamond, Steven De Jonghe,, Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. Journal of Clinical Investigation, 2017. 127(4).
10.Estefania Fernandez, W.D., Bin Cao, Suzanne M Scheaffer, Piyada Supasa, Wiyada Wongwiwat, Prabagaran Esakky,Andrea Drury, Juthathip Mongkolsapaya, Kelle H Moley,Indira U Mysorekar, Gavin R Screaton & Michael S Diamond, Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. nature immunology, 2017.
11.Franziska Schandock, C.F.R., Annika Röcker, Janis A. Müller, Mirja Harms,Paulina Gajda, Kaja Zuwala, Anna H. F. Andersen, Kaja Borup L??vschall, Martin Tolstrup, Florian Kreppel, Jan Münch, and Alexander N. Zelikin, Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv. Healthcare Mater, 2017.
12.Michaela J. Schultz, S.I., Scott F. Michael, Ronald B. Corley,John H. Connor, Horacio M. Frydman, Variable Inhibition of Zika Virus Replication by Different Wolbachia Strains in Mosquito Cell Cultures. Journal of Virology, 2017. 91(14).
13.Wang ZY, W.Z., Zhen ZD, Feng KH, Guo J, Gao N, Fan DY, Han DS, Wang PG, An J., Axl is not an indispensable factor for Zika virus infection in mice. J Gen Virol, 2017. 98(8): p. 7.
14.Richard AS, S.B., Kwon YC, Zhang R, Otsuka Y, Schmitt K, Berri F, Diamond MS, Choe H, AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci U S A, 2017. 114(8): p. 5.
15.Liu S, D.L., Isakson BE, Wang TT, AXL-Mediated Productive Infection of Human Endothelial Cells by Zika Virus. Circ Res, 2016. 119(11): p. 6.
16.Suwanmanee S, L.N., Dengue and Zika viruses: lessons learned from the similarities between these Aedes mosquito-vectored arboviruses. J Microbiol, 2017. 55(2): p. 8.
17.Feixiong Cheng, J.L.M., and Donald H. Rubin, Drug Repurposing: New Treatments for Zika Virus Infection. Trends in Molecular Medicine,, 2016. 22(11).
18.Miao Xu, E.M.L., Zhexing Wen, Yichen Cheng, Wei-Kai Huang, Xuyu Qian, Julia TCW, Jennifer Kouznetsova, Sarah C. Ogden, Christy Hammack, Fadi Jacob, Ha Nam Nguyen, Misha Itkin, Catherine Hanna, Paul Shinn, Chase Allen, Samuel G. Michael, Anton Simeonov, Wenwei Huang, Kimberly M. Christian, Alison Goate, Kristen J. Brennand, Ruili Huang, Menghang Xia, Guo-li Ming, Wei Zheng, Hongjun Song, and Hengli Tang, Identification of small molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 2016. 22(10): p. 1101–1107.
19.Amal Kamal Abdel-Aziz , E.M.M.a., Riham Soliman Said , Reham Helwa, The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries. Experimental Neurology, 2016. 283.
20.Alexander Nikolay , L.R.C., Udo Reichl , Yvonne Genzel Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells. Vaccine, 2017.
21.Yang Yang, M.L., Gary Wong, George F Gao, Baoguo Ye , Lei Liu, Shihua Li , Yingxia Liu , Shanqin Li , Yuhai Bi, Haixia Zheng , Qiang Wang, Development of a reverse transcription quantitative polymerase chain reaction-based assay for broad coverage detection of African and Asian Zika virus lineage. VIROLOGICA SINICA 2017. 32(3): p. 199-206.
22.Gregory Neveu, A.Z.-A., Rina Barouch-Bentov, Elena Berkerman, Jon Mulholland, Shirit Einava, AP-2-Associated Protein Kinase 1 and Cyclin G-Associated Kinase Regulate Hepatitis C Virus Entry and Are Potential Drug Targets. Journal of Virology, 2015. 89(8).
23.Shirit Einav, H.D.-S., Elizabeth Gehrig,and Jeffrey S. Glenn, The Hepatitis C Virus (HCV) NS4B RNA Binding Inhibitor Clemizole Is Highly Synergistic with HCV Protease Inhibitors. The Journal of Infectious Diseases 2010. 202(1): p.:65–74.
24.Gregory Neveu, R.B.-B., Amotz Ziv-Av, Doron Gerber, Yves Jacob, Shirit Einav, Identification and Targeting of an Interaction between a Tyrosine Motif within Hepatitis C Virus Core Protein and AP2M1 Essential for Viral Assembly. PLOS Pathogens, 2012. 8(8).
25.Shirit Einav, M.E., Tsafi Danieli, and Jeffrey S. Glenn, A Nucleotide Binding Motif in Hepatitis C Virus (HCV) NS4B Mediates HCV RNA Replication. JOURNAL OF VIROLOGY, 2004. 78: p. 11288-11295.
26.Sona Kovackova, L.C., Elena Bekerman, Gregory Neveu,Rina Barouch-Bentov,Apirat Chaikuad, Christina Heroven,Michal Šála, Steven De Jonghe, Stefan Knapp, Shirit Einav,and Piet Herdewijn, Selective Inhibitors of Cyclin G Associated Kinase (GAK) as AntiHepatitis C Agents. J. Med. Chem, 2015. 58: p. 3393−3410.
27.Pradip Devhare, K.M., Robert Steele, Ratna B Ray and Ranjit Ray, Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Citation: Cell Death and Disease, 2017. 8(10).
28.Fujisawa, A.M.H.M.M., Molecular mechanism mediating cytotoxic activity of axitinib in sunitinib-resistant human renal cell carcinoma cells. Clin Transl Oncol, 2016. 18.
29.KE ZHANG, X.W., HONGYAN WANG, Effect and mechanism of Src tyrosine kinase inhibitor sunitinib on the drug-resistance reversal of human A549/DDP cisplatin-resistant lung cancer cell line. MOLECULAR MEDICINE REPORTS, 2014. 10.
30.Szu-Yuan Pua, F.X., Stanford Schora, Elena Bekermana, Fabio Zaninic,Rina Barouch-Bentova, Claude M. Nagamined, Shirit Einava, Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral Research, 2018. 155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top