跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊柔均
研究生(外文):Jou-Chun Yang
論文名稱:MicroRNA-194抑制人類乳腺癌細胞的上皮與間質轉移
論文名稱(外文):MicroRNA-194 inhibits epithelial-mesenchymal transition in human breast cancer cells
指導教授:蔡士彰
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:三陰性乳癌細胞上皮與間質轉移
外文關鍵詞:Triple-negative breast cancer cellEpithelial-mesenchymal transitionmicroRNAmiR-194
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
惡性腫瘤在台灣一直是十大死因之首,乳癌是女性死亡率排名第四。造成惡性腫瘤形成的原因之一為基因失調,基因失調包含致癌基因的過度表現、抑癌基因的失活以及表觀遺傳學的改變包含為小核醣核酸(microRNA)表現差異。MicroRNA負調控基因且參與許多細胞功能包括細胞凋亡、代謝、增殖與腫瘤轉移等。經過定量反轉錄聚合酶鏈鎖反應檢測,發現在高轉移的三陰性乳癌細胞MDA-MB-231中,miR-194表現量較低,文獻指出 miR-194在不同癌症中可作為致癌基因亦可為抑癌基因,但是在乳癌中並無被報導過。因此,本研究主要探討miR-194在乳癌轉移中扮演之角色並探討其調控機制。結果顯示,藉由細胞傷口癒合和細胞爬行實驗發現轉染miR-194後的MDA-MB-231的爬行能力下降。根據明膠酵素實驗中,基質金屬蛋白酶MMP-9及MMP-2的活性下降。此外使用西方墨點法分析,發現轉染miR-194會使轉移相關的蛋白表現量下降且會讓黏附相關蛋白表現量上升。接著使用TargetScan網站找到miR-194調控的標靶基因,例如AKT2、Bmi1、SOX5和FOXA1等,並使用Western blotting確認該標靶基因的表現量下降。本研究結果顯示miR-194具有抑制乳癌細胞轉移的功能。
Malignant carcinoma has been the leading cause of disease death in Taiwan. The mortality of breast cancer ranks fourth in female. Carcinogenesis is associated with oncogene activation, tumor suppressor gene inactivation and epigenetic changes including difference in microRNA expression. MicroRNAs negatively regulate gene expression and are involved in several cell functions including apoptosis, metabolism, proliferation and metastasis. Relative expression of miR-194 is lower in metastatic triple-negative breast cancer cell line (MDA-MB-231) than in non-metastatic triple-negative breast cancer cell line (MCF7). Several lines of evidence showed that miR-194 can be oncogene or tumor suppressor gene in different cancers. However, there is no report about the role of miR-194 in breast cancer. Therefore, this study was to investigate the biological functions of miR-194 in breast cancer carcinogenesis. The results revealed that migration of MDA-MB-231 was inhibited by miR-194 using wound healing and transwell assays. According to the zymography data, miR-194 inhibited the gelatin-degrading activity of MMP-9 and MMP-2. In addition, miR-194 increased the expression of epithelial marker and decreased that of mesenchymal marker by western blotting. To verify miR-194 target genes, the TargetScan program is used to search miR-194 target genes including AKT2, Bmi1, FOXA1 and SOX5. The protein expression levels of miR-194 target genes were decreased after transfecting the miR-194 precursor into breast cancer cells. This study proves that miR-194 can inhibit EMT for breast cancer.
中文摘要 I
Abstract II
總目錄 III
圖目錄 V
符號與縮寫 VI
第一章、緒論 1
第一節 癌症 1
第二節 乳癌 1
第三節 三陰性乳癌 (Triple negative breast cancer, TNBC) 2
第四節 癌症的侵襲與轉移 2
第五節 MicroRNA 3
第六節 MicroRNA和上皮與間質轉移的關係 4
第七節 miR-194與其標靶基因 4
第二章、研究動機與目的 5
第三章、結果與討論 6
第一節 結果 6
一、miR-194的表現量在MDA-MB-231中較低 6
二、miR-194對MDA-MB-231之細胞爬行影響 6
三、miR-194對MDA-MB-231之MMP-2及MMP-9活性影響 7
四、miR-194對MDA-MB-231腫瘤轉移相關蛋白表現量影響 7
五、使用冷光報導基因實驗確認miR-194的標靶基因 7
六、使用西方墨點法檢測miR-194的標靶蛋白 8
第二節 討論 9
第四章、結論 11
第五章、實驗部分 12
第一節 實驗材料 12
一、細胞株與MicroRNA 12
二、藥品與試劑 12
三、儀器設備 16
第二節 實驗方法 17
一、細胞解凍 17
二、細胞繼代與培養 17
三、細胞冷凍與保存 19
四、萃取RNA 20
五、定量反轉錄聚合酶反應 21
六、建構標靶基因之冷光報導質體 22
七、萃取質體 DNA 及定量 23
八、轉染質體 DNA 至細胞 24
九、冷光報導基因實驗 (Luciferase reporter assay) 24
十、細胞傷口癒合實驗 (Wound-healing assay) 25
十一、細胞遷移實驗 (Cell migration assay) 26
十二、明膠酵素實驗 (Gelatin Zymography assay) 26
十三、細胞蛋白萃取與定量 30
十四、西方墨點法 (Western Blotting) 31
十五、統計方法 34
第六章、圖表 35
第七章、附錄圖 48
第八章、參考文獻 54
1.E. Warner, Breast-Cancer Screening. New Engl J Med 365, 1025-1032 (2011).
2.S. A. Wander, E. L. Mayer, H. J. Burstein, Blocking the Cycle: Cyclin-Dependent Kinase 4/6 Inhibitors in Metastatic, Hormone Receptor-Positive Breast Cancer. J Clin Oncol, JCO2017739482 (2017).
3.M. Chavez-MacGregor, E. A. Mittendorf, C. A. Clarke, D. Y. Lichtensztajn, K. K. Hunt, S. H. Giordano, Incorporating Tumor Characteristics to the American Joint Committee on Cancer Breast Cancer Staging System. The oncologist, (2017).
4.R. Mesnage, A. Phedonos, M. Arno, S. Balu, J. Christopher Corton, M. N. Antoniou, Transcriptome profiling reveals bisphenol A alternatives activate estrogen receptor alpha in human breast cancer cells. Toxicological sciences : an official journal of the Society of Toxicology, (2017).
5.K. E. Henry, G. A. Ulaner, J. S. Lewis, Human Epidermal Growth Factor Receptor 2-Targeted PET/Single- Photon Emission Computed Tomography Imaging of Breast Cancer: Noninvasive Measurement of a Biomarker Integral to Tumor Treatment and Prognosis. PET clinics 12, 269-288 (2017).
6.M. P. Goetz, K. R. Kalari, V. J. Suman, A. M. Moyer, J. Yu, D. W. Visscher, T. J. Dockter, P. T. Vedell, J. P. Sinnwell, X. Tang, K. J. Thompson, S. A. McLaughlin, A. Moreno-Aspitia, J. A. Copland, D. W. Northfelt, R. J. Gray, K. Hunt, A. Conners, R. Weinshilboum, L. Wang, J. C. Boughey, Tumor Sequencing and Patient-Derived Xenografts in the Neoadjuvant Treatment of Breast Cancer. Journal of the National Cancer Institute 109, (2017).

7.J. M. Balko, L. J. Schwarz, N. Luo, M. V. Estrada, J. M. Giltnane, D. Davila-Gonzalez, K. Wang, V. Sanchez, P. T. Dean, S. E. Combs, D. Hicks, J. A. Pinto, M. D. Landis, F. D. Doimi, R. Yelensky, V. A. Miller, P. J. Stephens, D. L. Rimm, H. Gomez, J. C. Chang, M. E. Sanders, R. S. Cook, C. L. Arteaga, Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Science translational medicine 8, 334ra353 (2016).
8.S. Stefanovic, R. Wirtz, T. M. Deutsch, A. Hartkopf, P. Sinn, Z. Varga, B. Sobottka, L. Sotiris, F. A. Taran, C. Domschke, A. Hennigs, S. Y. Brucker, C. Sohn, F. Schuetz, A. Schneeweiss, M. Wallwiener, Tumor biomarker conversion between primary and metastatic breast cancer: mRNA assessment and its concordance with immunohistochemistry. Oncotarget, (2017).
9.S. P. Huang, P. Y. Liu, C. J. Kuo, C. L. Chen, W. J. Lee, Y. H. Tsai, Y. F. Lin, The Galphah-PLCdelta1 signaling axis drives metastatic progression in triple-negative breast cancer. Journal of hematology & oncology 10, 114 (2017).
10.E. Montagna, A. Vingiani, P. Maisonneuve, G. Cancello, F. Contaldo, G. Pruneri, M. Colleoni, Unfavorable prognostic role of tumor-infiltrating lymphocytes in hormone-receptor positive, HER2 negative metastatic breast cancer treated with metronomic chemotherapy. Breast 34, 83-88 (2017).
11.A. Blake, M. Dragan, R. G. Tirona, D. B. Hardy, M. Brackstone, A. B. Tuck, A. V. Babwah, M. Bhattacharya, G protein-coupled KISS1 receptor is overexpressed in triple negative breast cancer and promotes drug resistance. Sci Rep 7, 46525 (2017).
12.H. Shen, Y. Yang, L. Zhao, J. Yuan, Y. Niu, Lin28A and androgen receptor expression in ER-/Her2+ breast cancer. Breast Cancer Res Treat 156, 135-147 (2016).
13.Z. Ajdari, H. Rahman, K. Shameli, R. Abdullah, M. Abd Ghani, S. Yeap, S. Abbasiliasi, D. Ajdari, A. Ariff, Novel Gold Nanoparticles Reduced by Sargassum glaucescens: Preparation, Characterization and Anticancer Activity. Molecules 21, 123 (2016).
14.E. Robles-Escajeda, U. Das, N. M. Ortega, K. Parra, G. Francia, J. R. Dimmock, A. Varela-Ramirez, R. J. Aguilera, A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cellular oncology 39, 265-277 (2016).
15.D. L. Holliday, V. Speirs, Choosing the right cell line for breast cancer research. Breast cancer research : BCR 13, 215 (2011).
16.Y. F. Tu, B. A. Kaipparettu, Y. Ma, L. J. Wong, Mitochondria of highly metastatic breast cancer cell line MDA-MB-231 exhibits increased autophagic properties. Biochim Biophys Acta 1807, 1125-1132 (2011).
17.I. A. Molnar, B. A. Molnar, L. Vizkeleti, K. Fekete, J. Tamas, P. Deak, C. Szundi, B. Szekely, J. Moldvay, S. Vari-Kakas, M. A. Szasz, B. Acs, J. Kulka, A. M. Tokes, Breast carcinoma subtypes show different patterns of metastatic behavior. Virchows Archiv : an international journal of pathology 470, 275-283 (2017).
18.P. J. Miranda, D. Buckley, D. Raghu, J. B. Pang, E. A. Takano, R. Vijayakumaran, A. F. Teunisse, A. Posner, T. Procter, M. J. Herold, C. Gamell, J. C. Marine, S. B. Fox, A. Jochemsen, S. Haupt, Y. Haupt, MDM4 is a rational target for treating breast cancers with mutant p53. The Journal of pathology 241, 661-670 (2017).
19.J. A. Mestres, A. B. iMolins, L. C. Martinez, J. I. Lopez-Muniz, E. C. Gil, A. de Juan Ferre, S. Del Barco Berron, Y. F. Perez, J. G. Mata, A. G. Palomo, J. G. Gregori, P. G. Pardo, J. J. Manas, A. L. Hernandez, E. M. de Duenas, N. M. Janez, S. M. Murillo, J. S. Bofill, P. Z. Aunon, P. Sanchez-Rovira, Defining the optimal sequence for the systemic treatment of metastatic breast cancer. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 19, 149-161 (2017).
20.A. Maiti, K. Takabe, N. C. Hait, Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival. Cellular signalling 32, 85-92 (2017).
21.J. F. Lima, S. Nofech-Mozes, J. Bayani, J. M. S. Bartlett, EMT in Breast Carcinoma-A Review. J Clin Med 5, (2016).
22.R. Tundis, D. Iacopetta, M. S. Sinicropi, M. Bonesi, M. Leporini, N. G. Passalacqua, J. Ceramella, F. Menichini, M. R. Loizzo, Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae). Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 106, 155-164 (2017).
23.A. Barbieri, V. Quagliariello, V. Del Vecchio, M. Falco, A. Luciano, N. J. Amruthraj, G. Nasti, A. Ottaiano, M. Berretta, R. V. Iaffaioli, C. Arra, Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment. Nutrients 9, (2017).
24.E. Donnarumma, D. Fiore, M. Nappa, G. Roscigno, A. Adamo, M. Iaboni, V. Russo, A. Affinito, I. Puoti, C. Quintavalle, A. Rienzo, S. Piscuoglio, R. Thomas, G. Condorelli, Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8, 19592-19608 (2017).
25.D. Iacopetta, A. Carocci, M. S. Sinicropi, A. Catalano, G. Lentini, J. Ceramella, R. Curcio, M. C. Caroleo, Old Drug Scaffold, New Activity: Thalidomide-Correlated Compounds Exert Different Effects on Breast Cancer Cell Growth and Progression. ChemMedChem 12, 381-389 (2017).
26.C. Angelucci, G. Maulucci, A. Colabianchi, F. Iacopino, A. D''Alessio, A. Maiorana, V. Palmieri, M. Papi, M. De Spirito, A. Di Leone, R. Masetti, G. Sica, Stearoyl-CoA desaturase 1 and paracrine diffusible signals have a major role in the promotion of breast cancer cell migration induced by cancer-associated fibroblasts. Br J Cancer 112, 1675-1686 (2015).
27.A. K. Thompson, B. F. Kelley, L. J. Prokop, H. Murad, C. L. Baum, Risk Factors for Cutaneous Squamous Cell Carcinoma Recurrence, Metastasis, and Disease-Specific Death A Systematic Review and Meta-analysis. Jama Dermatol 152, 419-428 (2016).
28.N. Petrovic, miR-21 Might be Involved in Breast Cancer Promotion and Invasion Rather than in Initial Events of Breast Cancer Development. Mol Diagn Ther 20, 97-110 (2016).
29.Y. Cai, X. Yu, S. Hu, J. Yu, A brief review on the mechanisms of miRNA regulation. Genomics, proteomics & bioinformatics 7, 147-154 (2009).
30.D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).
31.J. Zhang, L. Ma, MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer metastasis reviews 31, 653-662 (2012).
32.A. Zaravinos, The Regulatory Role of MicroRNAs in EMT and Cancer. Journal of oncology 2015, 865816 (2015).
33.H. Tian, C. Liu, X. Zou, W. Wu, C. Zhang, D. Yuan, MiRNA-194 Regulates Palmitic Acid-Induced Toll-Like Receptor 4 Inflammatory Responses in THP-1 Cells. Nutrients 7, 3483-3496 (2015).
34.J. Xu, Y. Kang, W. M. Liao, L. Yu, MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PloS one 7, e31861 (2012).
35.H. Zhuang, R. Zhang, S. Zhang, Q. Shu, D. Zhang, G. Xu, Altered expression of microRNAs in the neuronal differentiation of human Wharton''s Jelly mesenchymal stem cells. Neuroscience letters 600, 69-74 (2015).
36.Z. Li, X. Ying, H. Chen, P. Ye, Y. Shen, W. Pan, L. Zhang, MicroRNA-194 inhibits the epithelial-mesenchymal transition in gastric cancer cells by targeting FoxM1. Digestive diseases and sciences 59, 2145-2152 (2014).
37.H. K. Cai, X. Chen, Y. H. Tang, Y. C. Deng, MicroRNA-194 modulates epithelial-mesenchymal transition in human colorectal cancer metastasis. OncoTargets and therapy 10, 1269-1278 (2017).
38.D. Zhang, S. Liu, SOX5 promotes epithelial-mesenchymal transition in osteosarcoma via regulation of Snail. Journal of B.U.ON. : official journal of the Balkan Union of Oncology 22, 258-264 (2017).
39.L. Larue, A. Bellacosa, Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3'' kinase/AKT pathways. Oncogene 24, 7443-7454 (2005).
40.Y. Song, M. K. Washington, H. C. Crawford, Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer research 70, 2115-2125 (2010).
41.B. H. Guo, Y. Feng, R. Zhang, L. H. Xu, M. Z. Li, H. F. Kung, L. B. Song, M. S. Zeng, Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Molecular cancer 10, 10 (2011).
42.J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. Horvitz, T. R. Golub, MicroRNA expression profiles classify human cancers. Nature 435, 834-838 (2005).
43.O. Barad, E. Meiri, A. Avniel, R. Aharonov, A. Barzilai, I. Bentwich, U. Einav, S. Gilad, P. Hurban, Y. Karov, E. K. Lobenhofer, E. Sharon, Y. M. Shiboleth, M. Shtutman, Z. Bentwich, P. Einat, MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome research 14, 2486-2494 (2004).
44.K. Hino, T. Fukao, M. Watanabe, Regulatory interaction of HNF1-alpha to microRNA-194 gene during intestinal epithelial cell differentiation. Nucleic acids symposium series, 415-416 (2007).
45.Z. Meng, X. Fu, X. Chen, S. Zeng, Y. Tian, R. Jove, R. Xu, W. Huang, miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 52, 2148-2157 (2010).
46.Y. Song, F. Zhao, Z. Wang, Z. Liu, Y. Chiang, Y. Xu, P. Gao, H. Xu, Inverse association between miR-194 expression and tumor invasion in gastric cancer. Annals of surgical oncology 19 Suppl 3, S509-517 (2012).
47.C. J. Braun, X. Zhang, I. Savelyeva, S. Wolff, U. M. Moll, T. Schepeler, T. F. Orntoft, C. L. Andersen, M. Dobbelstein, p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer research 68, 10094-10104 (2008).
48.S. A. Georges, M. C. Biery, S. Y. Kim, J. M. Schelter, J. Guo, A. N. Chang, A. L. Jackson, M. O. Carleton, P. S. Linsley, M. A. Cleary, B. N. Chau, Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer research 68, 10105-10112 (2008).
49.P. Dong, M. Kaneuchi, H. Watari, J. Hamada, S. Sudo, J. Ju, N. Sakuragi, MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Molecular cancer 10, 99 (2011).
50.Retraction for Endoh et al., Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Molecular and cellular biology 34, 915 (2014).

51.E. M. Wagner, Monitoring gene expression: quantitative real-time rt-PCR. Methods in molecular biology 1027, 19-45 (2013).
52.S. C. Tan, B. C. Yiap, DNA, RNA, and protein extraction: the past and the present. Journal of biomedicine & biotechnology 2009, 574398 (2009).
53.T. K. Kim, J. H. Eberwine, Mammalian cell transfection: the present and the future. Analytical and bioanalytical chemistry 397, 3173-3178 (2010).
54.A. R. Brasier, J. J. Fortin, Nonisotopic assays for reporter gene activity. Current protocols in molecular biology / edited by Frederick M. Ausubel ... [et al.] Chapter 9, Unit9 7B (2001).
55.K. C. Lai, A. C. Huang, S. C. Hsu, C. L. Kuo, J. S. Yang, S. H. Wu, J. G. Chung, Benzyl Isothiocyanate (BITC) Inhibits Migration and Invasion of Human Colon Cancer HT29 Cells by Inhibiting Matrix Metalloproteinase-2/-9 and Urokinase Plasminogen (uPA) through PKC and MAPK Signaling Pathway. J Agr Food Chem 58, 2935-2942 (2010).
56.M. M. Handsley, D. R. Edwards, Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115, 849-860 (2005).
57.B. O. Yelken, T. Balci, S. Y. Susluer, C. Kayabasi, C. B. Avci, P. B. Kirmizibayrak, C. Gunduz, The effect of tomatine on metastasis related matrix metalloproteinase (MMP) activities in breast cancer cell model. Gene, (2017).
58.Y. Wang, W. Deng, Y. Zhang, S. Sun, S. Zhao, Y. Chen, X. Zhao, L. Liu, J. Du, MICAL2 Promotes Breast Cancer Cell Migration by Maintaining EGFR Stability and EGFR/P38 Signaling Activation. Acta physiologica, (2017).
59.R. Viedma-Rodriguez, M. G. Martinez-Hernandez, L. A. Flores-Lopez, L. A. Baiza-Gutman, Epsilon-aminocaproic acid prevents high glucose and insulin induced-invasiveness in MDA-MB-231 breast cancer cells, modulating the plasminogen activator system. Mol Cell Biochem, (2017).
60.B. T. Kurien, R. H. Scofield, Western blotting: an introduction. Methods Mol Biol 1312, 17-30 (2015).
61.F. S. Chueh, Y. T. Hsiao, S. J. Chang, P. P. Wu, J. S. Yang, J. J. Lin, J. G. Chung, T. Y. Lai, Glycyrrhizic acid induces apoptosis in WEHI-3 mouse leukemia cells through the caspase- and mitochondria-dependent pathways. Oncology Reports 28, 2069-2076 (2012).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top