|
1.Druetta, P., S. Mussati, and P. Aguirre, Seawater Desalination Processes: Optimal Design of Multi Effect Evaporation Systems, in Computer Aided Chemical Engineering. 2012, Elsevier. p. 770-774. 2.Al-Fulaij, H., et al., Simulation of stability and dynamics of multistage flash desalination. Desalination, 2011. 281: p. 404-412. 3.Shivayyanamath, S. and P. Tewari, Simulation of start-up characteristics of multi-stage flash desalination plants. Desalination, 2003. 155(3): p. 277-286. 4.Aybar, H.S., Analysis of a mechanical vapor compression desalination system. Desalination, 2002. 142(2): p. 181-186. 5.Cao, Z., et al., Analysis of a hybrid Thermal Vapor Compression and Reverse Osmosis desalination system at variable design conditions. Desalination, 2018. 438: p. 54-62. 6.Shemer, H. and R. Semiat, Sustainable RO desalination–Energy demand and environmental impact. Desalination, 2017. 424: p. 10-16. 7.Ladner, D.A., et al., Bench-scale evaluation of seawater desalination by reverse osmosis. Desalination, 2010. 250(2): p. 490-499. 8.Qasem, N.A., B.A. Qureshi, and S.M. Zubair, Improvement in design of electrodialysis desalination plants by considering the Donnan potential. Desalination, 2018. 441: p. 62-76. 9.Bitaw, T.N., K. Park, and D.R. Yang, Optimization on a new hybrid Forward osmosis-Electrodialysis-Reverse osmosis seawater desalination process. Desalination, 2016. 398: p. 265-281. 10.Tow, E.W., et al., Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. Journal of Membrane Science, 2018. 556: p. 352-364. 11.Xie, M. and S.R. Gray, Transport and accumulation of organic matter in forward osmosis-reverse osmosis hybrid system: Mechanism and implications. Separation and Purification Technology, 2016. 167: p. 6-16. 12.Xie, M., et al., Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water research, 2012. 46(8): p. 2683-2692. 13.Zhang, S., et al., Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. Journal of Membrane Science, 2010. 360(1-2): p. 522-535. 14.Calabrò, V. and A. Basile, Fundamental membrane processes, science and engineering, in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications. 2011, Elsevier. p. 3-21. 15.呂維明和呂文芳,過濾技術,高立圖書有限公司,臺北市,1994. 16.Kayvani Fard, A., et al., Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials, 2018. 11(1): p. 3-29. 17.Lee, H.J. and J.H. Park, Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor. Journal of Membrane Science, 2016. 518: p. 79-87. 18.Geffroy, P.-M., et al., Perovskite foams used in combination with dense ceramic membranes for oxygen transport membrane applications. Ceramics International, 2018. 44(16): p. 19831-19835. 19.蔡惠安,添加劑對 polysulfone 非對稱性薄膜型態與滲透蒸發之影響---平板膜與管狀膜,中原大學化學工程研究所學位論文,2002 20.Abdullah, N., et al., Membranes and Membrane Processes: Fundamentals, in Current Trends and Future Developments on (Bio-) Membranes. 2018, Elsevier. p. 45-70. 21.Wibisono, Y., et al., Two-phase flow in membrane processes: A technology with a future. Journal of membrane science, 2014. 453: p. 566-602. 22.Hassankiadeh, N.T., et al., PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. Journal of Membrane Science, 2014. 471: p. 237-246. 23.Xiao, G., et al., Synthesis of sulfonated poly (phthalazinone ether sulfone) s by direct polymerization. Polymer, 2002. 43(19): p. 5335-5339. 24.Altınkaya, S., Modeling of asymmetric membrane formation by a combination of dry/wet phase inversion processes. 2006. 25.Kim, S., et al., Porous polyimide membranes prepared by wet phase inversion for use in low dielectric applications. International journal of molecular sciences, 2013. 14(5): p. 8698-8707. 26.Mallevialle, J., P.E. Odendaal, and M.R. Wiesner, Water treatment membrane processes. 1996: American Water Works Association. 27.Sablani, S., et al., Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 2001. 141(3): p. 269-289. 28.Madireddi, K., et al., An unsteady-state model to predict concentration polarization in commercial spiral wound membranes. Journal of Membrane science, 1999. 157(1): p. 13-34. 29.黃立綸,PEG 改質,PEI/PPSU,薄膜孔洞大小對有機廢水分離效率之研究,中興大學環境工程學系所學位論文,2009 30.Bowen, W., J. Calvo, and A. Hernandez, Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 1995. 101(1-2): p. 153-165. 31.Ma, K., T.S. Chung, and R.J. Good, Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. Journal of Polymer Science Part B: Polymer Physics, 1998. 36(13): p. 2327-2337. 32.Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994. 33.Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551. 34.Alsvik, I.L. and M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers, 2013. 5(1): p. 303-327. 35.Johnson, D.J., et al., Osmotic's potential: An overview of draw solutes for forward osmosis. Desalination, 2017. 36.賴振立, 高分子醋酸纖維素中空纖維膜之製備與直接滲透-薄膜蒸餾複合技術之應用的報告. 37.Zhang, S., et al., Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). water research, 2014. 52: p. 112-121. 38.Qasim, M., et al., Forward osmosis desalination using ferric sulfate draw solute. Desalination, 2017. 423: p. 12-20. 39.Zhou, Z., J.Y. Lee, and T.-S. Chung, Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chemical Engineering Journal, 2014. 249: p. 236-245. 40.Kim, J., et al., Evaluation of ethanol as draw solute for forward osmosis (FO) process of highly saline (waste) water. Desalination, 2019. 456: p. 23-31. 41.Abbasi-Garravand, E., et al., Investigation of the fouling effect on a commercial semi-permeable membrane in the pressure retarded osmosis (PRO) process. Separation and Purification Technology, 2018. 193: p. 81-90. 42.Shu, L., et al., Why does pH increase with CaCl2 as draw solution during forward osmosis filtration. Process Safety and Environmental Protection, 2016. 104: p. 465-471. 43.Luján-Facundo, M., et al., A study of the osmotic membrane bioreactor process using a sodium chloride solution and an industrial effluent as draw solutions. Chemical Engineering Journal, 2017. 322: p. 603-610. 44.Kim, Y., et al., Operation and simulation of pilot-scale forward osmosis desalination with ammonium bicarbonate. Chemical Engineering Research and Design, 2015. 94: p. 390-395. 45.Chanukya, B., S. Patil, and N.K. Rastogi, Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate. Desalination, 2013. 312: p. 39-44. 46.Ray, S.S., et al., Forward osmosis desalination by utilizing chlorhexidine gluconate based mouthwash as a reusable draw solute. Chemical Engineering Journal, 2016. 304: p. 962-969. 47.Ge, Q., M. Ling, and T.-S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. Journal of membrane science, 2013. 442: p. 225-237. 48.Akther, N., et al., Recent advancements in forward osmosis desalination: a review. Chemical Engineering Journal, 2015. 281: p. 502-522. 49.Wan, C.F. and T.-S. Chung, Techno-economic evaluation of various RO+ PRO and RO+ FO integrated processes. Applied Energy, 2018. 212: p. 1038-1050. 50.Zhang, Y., et al., A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system. Environmental science & technology, 2013. 47(18): p. 10548-10555. 51.Nguyen, N.C., et al., Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge. Science of the Total Environment, 2016. 557: p. 44-50. 52.Kim, C., S. Lee, and S. Hong, Application of osmotic backwashing in forward osmosis: mechanisms and factors involved. Desalination and Water Treatment, 2012. 43(1-3): p. 314-322. 53.Gwak, G., D.I. Kim, and S. Hong, New industrial application of forward osmosis (FO): Precious metal recovery from printed circuit board (PCB) plant wastewater. Journal of Membrane Science, 2018. 552: p. 234-242. 54.Altaee, A., A.A. Alanezi, and A.H. Hawari, Forward osmosis feasibility and potential future application for desalination, in Emerging Technologies for Sustainable Desalination Handbook. 2018, Elsevier. p. 35-54. 55.Altaee, A., et al., Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance. Applied energy, 2017. 191: p. 328-345. 56.Tow, E.W. and R.K. McGovern, Raising forward osmosis brine concentration efficiency through flow rate optimization. Desalination, 2015. 366: p. 71-79. 57.Hancock, N.T., et al., Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale. Journal of membrane science, 2013. 445: p. 34-46. 58.Wang, K.Y., et al., Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions. Chemical Engineering Science, 2011. 66(11): p. 2421-2430. 59.Bhattacharjee, C., V. Saxena, and S. Dutta, Fruit juice processing using membrane technology: A review. Innovative Food Science & Emerging Technologies, 2017. 43: p. 136-153. 60.Jin, X., et al., Rejection of pharmaceuticals by forward osmosis membranes. Journal of hazardous materials, 2012. 227: p. 55-61. 61.McCormick, P., et al., Water, salt, and ethanol diffusion through membranes for water recovery by forward (direct) osmosis processes. Journal of membrane science, 2008. 325(1): p. 467-478. 62.Hama, S., et al., Saccharification behavior of cellulose acetate during enzymatic processing for microbial ethanol production. Bioresource technology, 2014. 157: p. 1-5. 63.Zavastin, D., et al., Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 370(1-3): p. 120-128. 64.Kee, C.M. and A. Idris, Modification of cellulose acetate membrane using monosodium glutamate additives prepared by microwave heating. Journal of Industrial and Engineering Chemistry, 2012. 18(6): p. 2115-2123. 65.Zafar, M., et al., Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures. Desalination, 2012. 285: p. 359-365. 66.Rahimpour, A. and S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. Journal of Membrane Science, 2007. 305(1-2): p. 299-312. 67.Kamal, H., F. Abd-Elrahim, and S. Lotfy, Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation. Journal of radiation research and applied sciences, 2014. 7(2): p. 146-153. 68.Koseoglu-Imer, D.Y., N. Dizge, and I. Koyuncu, Enzymatic activation of cellulose acetate membrane for reducing of protein fouling. Colloids and Surfaces B: Biointerfaces, 2012. 92: p. 334-339. 69.Su, J., et al., Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. Journal of membrane science, 2010. 355(1-2): p. 36-44. 70.Mu, C., et al., Remarkable improvement of the performance of poly (vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate. Journal of Membrane Science, 2010. 350(1-2): p. 293-300. 71.Sivakumar, M., D.R. Mohan, and R. Rangarajan, Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. Journal of Membrane Science, 2006. 268(2): p. 208-219. 72.Murphy, A.P., et al., Microbiological damage of cellulose acetate RO membranes. Journal of Membrane Science, 2001. 193(1): p. 111-121. 73.El-Gendi, A., et al., Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination. Journal of Molecular Structure, 2017. 1146: p. 14-22. 74.Idris, A. and L.K. Yet, The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. Journal of Membrane Science, 2006. 280(1-2): p. 920-927. 75.Magnanelli, E., et al., Enhancing the understanding of heat and mass transport through a cellulose acetate membrane for CO2 separation. Journal of Membrane Science, 2016. 513: p. 129-139. 76.Kee, C.M. and A. Idris, Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Separation and Purification Technology, 2010. 75(2): p. 102-113. 77.Czayka, M. and M. Fisch, Effects of electron beam irradiation of cellulose acetate cigarette filters. Radiation Physics and Chemistry, 2012. 81(7): p. 874-878. 78.El-Ashhab, F., et al., The influence of gamma irradiation on the intrinsic properties of cellulose acetate polymers. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2013. 14(1): p. 46-50. 79.Udaeta, M.C., et al., Recovery of phosphorus from Sewage Sludge Ash (SSA) by heat treatment followed by high gradient magnetic separation and flotation. Advanced Powder Technology, 2017. 28(3): p. 755-762. 80.Wang, J., et al., Dissolved organic matter removal by magnetic anion exchange resin and released ion elimination by electrolysis. Chemical Engineering Journal, 2014. 253: p. 237-242. 81.Oshita, K., et al., Removal of siloxanes in sewage sludge by thermal treatment with gas stripping. Energy conversion and management, 2014. 81: p. 290-297. 82.劉炅憲,國內生活污水處理廠操作節能探討-以活性污泥操作法為例,2012. 83.吳堅瑜,以實場人工溼地系統直接處理社區污水效能之研究,2003. 84.左惠文,以人工溼地處理校園污水之功能性探討,2004.
|