跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭湘鈴
研究生(外文):Zheng, Xiang-Ling
論文名稱:正滲透回收生活污水之研究
論文名稱(外文):Recovery of Water From Domestic Sewage Using Forward Osmosis System
指導教授:賴振立
指導教授(外文):Lai,Cheng-Lee
口試委員:陳世雄高瑟聰
口試委員(外文):Chen, Shih-HsiungGAO,Se-Cong
口試日期:2019-07-09
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:正滲透
外文關鍵詞:Forward Osmosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討醋酸纖維膜利用直接滲透技術(FO)應用於水回收之可行性探討。首先利用醋酸纖維素(CA)自行製備之平板膜,藉由電子顯微鏡(SEM)探討薄膜表面結構、表面粗糙度及量測接觸角探討薄膜表面之親疏水性。應用於直接滲透及壓力延遲滲透(PRO)技術試驗,利用氯化鈉(NaCl)溶液做為驅動液(Draw Solution),以生活污水為進流液,探討兩系統之滲透量、鹽阻率及水回收效益之影響。
實驗操作變因如下(1)鑄膜液之不同醋酸纖維素濃度、(2)FO及PRO操作技術試驗之影響、(3) Draw Solution之濃度變化、(4) Feed Solution變化對不同濃度醋酸纖維膜之過濾效果。
結果顯示鑄膜液之高分子CA濃度12wt%,因薄膜孔洞較緻密導致通量較低,但鹽阻率較高且有助於以FO技術回收生活污水時,有效阻擋氨氮、COD、TOC、鈣、鎂、銅、及錳等金屬濃度,達到本次實驗之研究目的。
In this study prepared by different concentrations of cellulose acetate(CA) for the forward osmosis (FO) and pressure retarded osmosis(PRO) process applies in the domestic sewage recovery technology. Membrane structure, pore size, and surface porosity characterized by scanning electron microscopy (SEM). Measuring hydrophilicity of membranes by contact angles. Using NaCl solution as the draw solution by conducting the batch FO and PRO process, the water flux and salt rejection for the prepared membrane were measured.
Experiments of filtration by forward osmosis system were conducted under various operating conditions including cellulose acetate concentration, draw solution concentration, and feed solution.
The results show that CA membrane is dense structure. Water flux achieved by the 12wt%CA membrane was much lower than 8wt%. 12wt%CA membrane had high salt rejection, and rejected NH4+, COD, TOC, Ca2+, Mg2+,Mn2+ and Cu2+ of feed solution effective. NH4+rejection higher then 99%.
目錄
摘要 I
ABSTRACT II
目錄 III
表目錄 IX
第一章、 前言 1
1-1、研究動機 1
1-2、研究目的 3
第二章、 文獻回顧 4
2-1、薄膜單元 4
2-1-1、薄膜定義 4
2-1-2、薄膜特性 4
2-1-3、薄膜結構 5
2-1-4、薄膜製備方法 9
2-1-5、薄膜過濾方式 12
2-1-6、薄膜程序之操作限制與清洗方法 13
2-1-7、表面接觸角原理 17
2-2、正滲透介紹 20
2-2-1、原理 20
2-2-2、FO與RO差異 21
2-2-3、FO與PRO差異 21
2-2-4、Draw Solution選擇 24
2-2-5、Draw Solution回收方法 24
2-2-6、正滲透積垢清洗 26
2-2-7、正滲透應用 27
2-3、醋酸纖維膜(Cellulose Acetate,CA) 28
2-4、生活污水處理技術 30
2-4-1、處理技術介紹 30
2-4-2、生活污水介紹 31
2-4-3、嘉南藥理大學生活污水處理 33
第三章、 實驗材料與方法 34
3-1、實驗藥品 34
3-1-1、薄膜配置與實驗藥品 34
3-1-2、靛酚比色法藥品 34
3-1-3、重鉻酸鉀迴流法藥品 35
3-2、實驗儀器與器材 35
3-2-1、表面接觸角測量儀(Contact Angle) 37
3-2-2、掃瞄式電子顯微鏡(Scanning Electron Microscope , SEM) 38
3-2-3、感應耦合電漿原子發射光譜儀(ICP) 39
3-2-4、總有機碳分析儀(TOC) 41
3-3、水質檢驗方法 42
3-3-1、水中氨氮檢測方法-靛酚比色法 42
3-3-2、化學需氧量檢測方法-重鉻酸鉀迴流法 42
3-4、薄膜製備 43
3-4-1、CA鑄膜溶液配製 43
3-4-2、平板膜之製備 43
3-5、實驗模組介紹及實驗前準備 45
3-6、實驗方法 48
3-6-1、平板膜實驗步驟及實驗流程圖 48
第四章、 結果與討論 51
4-1、醋酸纖維膜濃度變化之膜結構探討 52
4-2、醋酸纖維膜表面親疏水性影響 55
4-3、CA濃度變化對FO/PRO系統之影響 58
4-4、Draw Solution鹽度變化對FO操作之影響 62
4-5、人工濕地生活污水以FO/PRO操作之結果 64
4-6、模擬含重金屬、氨氮污水之處理結果 83
4-6-1、氨氮生活污水處理結果 83
4-6-2、重金屬生活污水處理結果 88
第五章、 結論 93
5-1、醋酸纖維平板膜 93
參考文獻 95


1.Druetta, P., S. Mussati, and P. Aguirre, Seawater Desalination Processes: Optimal Design of Multi Effect Evaporation Systems, in Computer Aided Chemical Engineering. 2012, Elsevier. p. 770-774.
2.Al-Fulaij, H., et al., Simulation of stability and dynamics of multistage flash desalination. Desalination, 2011. 281: p. 404-412.
3.Shivayyanamath, S. and P. Tewari, Simulation of start-up characteristics of multi-stage flash desalination plants. Desalination, 2003. 155(3): p. 277-286.
4.Aybar, H.S., Analysis of a mechanical vapor compression desalination system. Desalination, 2002. 142(2): p. 181-186.
5.Cao, Z., et al., Analysis of a hybrid Thermal Vapor Compression and Reverse Osmosis desalination system at variable design conditions. Desalination, 2018. 438: p. 54-62.
6.Shemer, H. and R. Semiat, Sustainable RO desalination–Energy demand and environmental impact. Desalination, 2017. 424: p. 10-16.
7.Ladner, D.A., et al., Bench-scale evaluation of seawater desalination by reverse osmosis. Desalination, 2010. 250(2): p. 490-499.
8.Qasem, N.A., B.A. Qureshi, and S.M. Zubair, Improvement in design of electrodialysis desalination plants by considering the Donnan potential. Desalination, 2018. 441: p. 62-76.
9.Bitaw, T.N., K. Park, and D.R. Yang, Optimization on a new hybrid Forward osmosis-Electrodialysis-Reverse osmosis seawater desalination process. Desalination, 2016. 398: p. 265-281.
10.Tow, E.W., et al., Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. Journal of Membrane Science, 2018. 556: p. 352-364.
11.Xie, M. and S.R. Gray, Transport and accumulation of organic matter in forward osmosis-reverse osmosis hybrid system: Mechanism and implications. Separation and Purification Technology, 2016. 167: p. 6-16.
12.Xie, M., et al., Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water research, 2012. 46(8): p. 2683-2692.
13.Zhang, S., et al., Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. Journal of Membrane Science, 2010. 360(1-2): p. 522-535.
14.Calabrò, V. and A. Basile, Fundamental membrane processes, science and engineering, in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications. 2011, Elsevier. p. 3-21.
15.呂維明和呂文芳,過濾技術,高立圖書有限公司,臺北市,1994.
16.Kayvani Fard, A., et al., Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials, 2018. 11(1): p. 3-29.
17.Lee, H.J. and J.H. Park, Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor. Journal of Membrane Science, 2016. 518: p. 79-87.
18.Geffroy, P.-M., et al., Perovskite foams used in combination with dense ceramic membranes for oxygen transport membrane applications. Ceramics International, 2018. 44(16): p. 19831-19835.
19.蔡惠安,添加劑對 polysulfone 非對稱性薄膜型態與滲透蒸發之影響---平板膜與管狀膜,中原大學化學工程研究所學位論文,2002
20.Abdullah, N., et al., Membranes and Membrane Processes: Fundamentals, in Current Trends and Future Developments on (Bio-) Membranes. 2018, Elsevier. p. 45-70.
21.Wibisono, Y., et al., Two-phase flow in membrane processes: A technology with a future. Journal of membrane science, 2014. 453: p. 566-602.
22.Hassankiadeh, N.T., et al., PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. Journal of Membrane Science, 2014. 471: p. 237-246.
23.Xiao, G., et al., Synthesis of sulfonated poly (phthalazinone ether sulfone) s by direct polymerization. Polymer, 2002. 43(19): p. 5335-5339.
24.Altınkaya, S., Modeling of asymmetric membrane formation by a combination of dry/wet phase inversion processes. 2006.
25.Kim, S., et al., Porous polyimide membranes prepared by wet phase inversion for use in low dielectric applications. International journal of molecular sciences, 2013. 14(5): p. 8698-8707.
26.Mallevialle, J., P.E. Odendaal, and M.R. Wiesner, Water treatment membrane processes. 1996: American Water Works Association.
27.Sablani, S., et al., Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 2001. 141(3): p. 269-289.
28.Madireddi, K., et al., An unsteady-state model to predict concentration polarization in commercial spiral wound membranes. Journal of Membrane science, 1999. 157(1): p. 13-34.
29.黃立綸,PEG 改質,PEI/PPSU,薄膜孔洞大小對有機廢水分離效率之研究,中興大學環境工程學系所學位論文,2009
30.Bowen, W., J. Calvo, and A. Hernandez, Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 1995. 101(1-2): p. 153-165.
31.Ma, K., T.S. Chung, and R.J. Good, Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. Journal of Polymer Science Part B: Polymer Physics, 1998. 36(13): p. 2327-2337.
32.Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
33.Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.
34.Alsvik, I.L. and M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers, 2013. 5(1): p. 303-327.
35.Johnson, D.J., et al., Osmotic's potential: An overview of draw solutes for forward osmosis. Desalination, 2017.
36.賴振立, 高分子醋酸纖維素中空纖維膜之製備與直接滲透-薄膜蒸餾複合技術之應用的報告.
37.Zhang, S., et al., Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). water research, 2014. 52: p. 112-121.
38.Qasim, M., et al., Forward osmosis desalination using ferric sulfate draw solute. Desalination, 2017. 423: p. 12-20.
39.Zhou, Z., J.Y. Lee, and T.-S. Chung, Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chemical Engineering Journal, 2014. 249: p. 236-245.
40.Kim, J., et al., Evaluation of ethanol as draw solute for forward osmosis (FO) process of highly saline (waste) water. Desalination, 2019. 456: p. 23-31.
41.Abbasi-Garravand, E., et al., Investigation of the fouling effect on a commercial semi-permeable membrane in the pressure retarded osmosis (PRO) process. Separation and Purification Technology, 2018. 193: p. 81-90.
42.Shu, L., et al., Why does pH increase with CaCl2 as draw solution during forward osmosis filtration. Process Safety and Environmental Protection, 2016. 104: p. 465-471.
43.Luján-Facundo, M., et al., A study of the osmotic membrane bioreactor process using a sodium chloride solution and an industrial effluent as draw solutions. Chemical Engineering Journal, 2017. 322: p. 603-610.
44.Kim, Y., et al., Operation and simulation of pilot-scale forward osmosis desalination with ammonium bicarbonate. Chemical Engineering Research and Design, 2015. 94: p. 390-395.
45.Chanukya, B., S. Patil, and N.K. Rastogi, Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate. Desalination, 2013. 312: p. 39-44.
46.Ray, S.S., et al., Forward osmosis desalination by utilizing chlorhexidine gluconate based mouthwash as a reusable draw solute. Chemical Engineering Journal, 2016. 304: p. 962-969.
47.Ge, Q., M. Ling, and T.-S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. Journal of membrane science, 2013. 442: p. 225-237.
48.Akther, N., et al., Recent advancements in forward osmosis desalination: a review. Chemical Engineering Journal, 2015. 281: p. 502-522.
49.Wan, C.F. and T.-S. Chung, Techno-economic evaluation of various RO+ PRO and RO+ FO integrated processes. Applied Energy, 2018. 212: p. 1038-1050.
50.Zhang, Y., et al., A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system. Environmental science & technology, 2013. 47(18): p. 10548-10555.
51.Nguyen, N.C., et al., Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge. Science of the Total Environment, 2016. 557: p. 44-50.
52.Kim, C., S. Lee, and S. Hong, Application of osmotic backwashing in forward osmosis: mechanisms and factors involved. Desalination and Water Treatment, 2012. 43(1-3): p. 314-322.
53.Gwak, G., D.I. Kim, and S. Hong, New industrial application of forward osmosis (FO): Precious metal recovery from printed circuit board (PCB) plant wastewater. Journal of Membrane Science, 2018. 552: p. 234-242.
54.Altaee, A., A.A. Alanezi, and A.H. Hawari, Forward osmosis feasibility and potential future application for desalination, in Emerging Technologies for Sustainable Desalination Handbook. 2018, Elsevier. p. 35-54.
55.Altaee, A., et al., Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance. Applied energy, 2017. 191: p. 328-345.
56.Tow, E.W. and R.K. McGovern, Raising forward osmosis brine concentration efficiency through flow rate optimization. Desalination, 2015. 366: p. 71-79.
57.Hancock, N.T., et al., Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale. Journal of membrane science, 2013. 445: p. 34-46.
58.Wang, K.Y., et al., Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions. Chemical Engineering Science, 2011. 66(11): p. 2421-2430.
59.Bhattacharjee, C., V. Saxena, and S. Dutta, Fruit juice processing using membrane technology: A review. Innovative Food Science & Emerging Technologies, 2017. 43: p. 136-153.
60.Jin, X., et al., Rejection of pharmaceuticals by forward osmosis membranes. Journal of hazardous materials, 2012. 227: p. 55-61.
61.McCormick, P., et al., Water, salt, and ethanol diffusion through membranes for water recovery by forward (direct) osmosis processes. Journal of membrane science, 2008. 325(1): p. 467-478.
62.Hama, S., et al., Saccharification behavior of cellulose acetate during enzymatic processing for microbial ethanol production. Bioresource technology, 2014. 157: p. 1-5.
63.Zavastin, D., et al., Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 370(1-3): p. 120-128.
64.Kee, C.M. and A. Idris, Modification of cellulose acetate membrane using monosodium glutamate additives prepared by microwave heating. Journal of Industrial and Engineering Chemistry, 2012. 18(6): p. 2115-2123.
65.Zafar, M., et al., Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures. Desalination, 2012. 285: p. 359-365.
66.Rahimpour, A. and S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. Journal of Membrane Science, 2007. 305(1-2): p. 299-312.
67.Kamal, H., F. Abd-Elrahim, and S. Lotfy, Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation. Journal of radiation research and applied sciences, 2014. 7(2): p. 146-153.
68.Koseoglu-Imer, D.Y., N. Dizge, and I. Koyuncu, Enzymatic activation of cellulose acetate membrane for reducing of protein fouling. Colloids and Surfaces B: Biointerfaces, 2012. 92: p. 334-339.
69.Su, J., et al., Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. Journal of membrane science, 2010. 355(1-2): p. 36-44.
70.Mu, C., et al., Remarkable improvement of the performance of poly (vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate. Journal of Membrane Science, 2010. 350(1-2): p. 293-300.
71.Sivakumar, M., D.R. Mohan, and R. Rangarajan, Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. Journal of Membrane Science, 2006. 268(2): p. 208-219.
72.Murphy, A.P., et al., Microbiological damage of cellulose acetate RO membranes. Journal of Membrane Science, 2001. 193(1): p. 111-121.
73.El-Gendi, A., et al., Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination. Journal of Molecular Structure, 2017. 1146: p. 14-22.
74.Idris, A. and L.K. Yet, The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. Journal of Membrane Science, 2006. 280(1-2): p. 920-927.
75.Magnanelli, E., et al., Enhancing the understanding of heat and mass transport through a cellulose acetate membrane for CO2 separation. Journal of Membrane Science, 2016. 513: p. 129-139.
76.Kee, C.M. and A. Idris, Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Separation and Purification Technology, 2010. 75(2): p. 102-113.
77.Czayka, M. and M. Fisch, Effects of electron beam irradiation of cellulose acetate cigarette filters. Radiation Physics and Chemistry, 2012. 81(7): p. 874-878.
78.El-Ashhab, F., et al., The influence of gamma irradiation on the intrinsic properties of cellulose acetate polymers. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2013. 14(1): p. 46-50.
79.Udaeta, M.C., et al., Recovery of phosphorus from Sewage Sludge Ash (SSA) by heat treatment followed by high gradient magnetic separation and flotation. Advanced Powder Technology, 2017. 28(3): p. 755-762.
80.Wang, J., et al., Dissolved organic matter removal by magnetic anion exchange resin and released ion elimination by electrolysis. Chemical Engineering Journal, 2014. 253: p. 237-242.
81.Oshita, K., et al., Removal of siloxanes in sewage sludge by thermal treatment with gas stripping. Energy conversion and management, 2014. 81: p. 290-297.
82.劉炅憲,國內生活污水處理廠操作節能探討-以活性污泥操作法為例,2012.
83.吳堅瑜,以實場人工溼地系統直接處理社區污水效能之研究,2003.
84.左惠文,以人工溼地處理校園污水之功能性探討,2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top