跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 10:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張子喬
研究生(外文):Tzu-Chiao Chang
論文名稱:蓮蓬萃取物合併化療藥物cisplatin應用於頭頸部癌治療之研究
論文名稱(外文):Study of lotus seedpod extracts in combination with chemotherapy drug cisplatin in treatment of head and neck cancer
指導教授:陳璟賢陳璟賢引用關係
指導教授(外文):Jing-Hsien Chen
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:頭頸部癌順鉑蓮蓬萃取物細胞凋亡細胞自噬
外文關鍵詞:Head and neck cancercisplatinlotus seedpod extractsapoptosisautophagy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 I
Abstract II
縮寫檢索表 IV
第一章、緒論 1
第二章、文獻探討 2
2.1 頭頸部癌(Head and neck cancer) 2
2.1.1 簡介 2
2.1.2臨床治療及現況 2
2.1.3 頭頸部癌與多酚類(polyphenol)物質之相關性 2
2.2 順鉑(cisplatin) 3
2.2.1 cisplatin藥物簡介 3
2.2.2 cisplatin合併多酚類物質輔助癌症治療之相關研究 5
2.3蓮蓬(Lotus seedpod) 5
2.3.1 蓮植株介紹 5
2.3.2蓮蓬成分與功效 6
2.4細胞凋亡(Apoptosis) 6
2.4.1 細胞凋亡定義 6
2.4.2細胞凋亡的型態與特徵 7
2.4.3 細胞凋亡分子機制 7
2.5 細胞自噬(Autophagy) 8
2.5.1 細胞自噬簡介 8
2.5.2 細胞自噬與疾病之關係 9
2.5.3 細胞自噬分子機制 10
第三章、實驗架構與流程 12
3.1細胞與動物實驗架構 12
第四章、材料與方法 13
4.1實驗儀器與藥品試劑 13
4.1.1 各項實驗儀器與試劑 13
4.1.2 Cisplatin之配製 20
4.1.3 蓮蓬萃取物(lotus seedpod extracts, LSE)之製備 20
4.2細胞培養(Cell culture) 20
4.2.1 細胞株 20
4.2.2 實驗設計 20
4.2.3 培養條件 20
4.2.4 解凍細胞 21
4.2.5 繼代培養 21
4.2.6 細胞計數 21
4.2.7 冷凍細胞 21
4.3 細胞存活試驗(Cell viability) 22
4.4細胞凋亡分析(螢光染色法4’6-diamidino-2-phenylindole, DAPI stain) 22
4.5細胞凋亡分析-雙染色法(Annexin V/PI stain) 22
4.6 凋亡蛋白酶活性測試(cysteine aspartate protease activity assay) 23
4.7.細胞蛋白質萃取與定量 23
4.7.1. 蛋白質萃取 23
4.7.2 蛋白質定量 24
4.7.3 粒線體分離 24
4.8. 西方墨點法(Western blotting) 24
4.8.1 樣品(Sample)配置 24
4.8.2 架膠 (SDS-PAGE) 25
4.8.3 電泳法(electrophoresis) 25
4.8.4 轉漬(Transfer) 26
4.8.5 免疫墨點法(Immunoblot) 26
4.9 粒線體膜電位分析(Mitochondria membrane potentialassay, JC-1 staining) 27
4.10 細胞自噬分析(Acridine orange stain, AVO stain) 27
4.11 實驗動物 28
4.11.1 實驗設計與流程 28
4.11.2 飼料配製 28
4.11.3 Cisplatin 注射液配置 29
4.12.4 樣本採集與處理 29
4.12 統計方法 29
第五章、實驗結果 30
5.1探討不同濃度LSE單獨及合併cisplatin處理對於頭頸部癌FaDu細胞存活之影響 30
5.2探討LSE合併cisplatin處理對於FaDu細胞凋亡之影響 30
5.3 探討LSE合併cisplatin處理對於FaDu細胞內凋亡蛋白酶活性之影響 31
5.4 探討LSE合併cisplatin處理對於FaDu細胞內凋亡分子表現之影響 31
5.5 探討LSE合併cisplatin處理對於FaDu 細胞內粒線體膜電位改變之影響 31
5.6 探討LSE合併cisplatin處理對於調控凋亡內在因子cytochrome c表現量之影響 32
5.7探討LSE合併cisplatin處理對於調控凋亡內在因子Bcl-family蛋白之影響 32
5.8 探討LSE合併cisplatin處理對於自噬細胞之影響 33
5.9 探討LSE合併cisplatin處理對於細胞自噬相關蛋白之影響 33
5.10 探討預先處理細胞自噬抑制劑對於LSE合併cisplatin之細胞凋亡的影響 34
5.11 探討預先處理細胞自噬抑制劑對於LSE合併cisplatin之細胞自噬的影響 34
5.12 探討LSE合併cisplatin處理對於裸鼠移植性腫瘤大小以及生長速度之影響 35
5.13 探討LSE合併cisplatin處理對於體內腫瘤組織細胞凋亡相關蛋白表現之影響 35
5.14 探討LSE合併cisplatin處理對於體內腫瘤組織細胞自噬相關蛋白表現之影響 36
第六章、討論 37
第七章、結論 40
第八章、參考文獻 41
1.Vokes EE, Weichselbaum RR, Lippman SM, et al. Head and neck cancer. New England Journal of Medicine. 1993. 328: 184-194.
2.Chen Q, Hu P. Proanthocyanidins prevent ethanol-induced cognitive impairment by suppressing oxidative and inflammatory stress in adult rat brain. NeuroReport. 2017. 28: 980-986.
3.Duan Y-Q, Liu R, Xie B-J. Preparatory Study: Efect of LSPC on the Tyrosinase Activity and the Melanin Biosynthesis of Melanin and the Tyrosinase Activity. Food Science. 2004. 25: 169-174.
4.Zhao X, Feng X, Peng D, et al. Anticancer activities of alkaloids extracted from the Ba lotus seed in human nasopharyngeal carcinoma CNE‑1 cells. Experimental and therapeutic medicine. 2016. 12: 3113-3120.
5.Masuda M, Suzui M, Weinstein IB. Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clinical cancer research. 2001. 7: 4220-4229.
6.Wilken R, Veena MS, Wang MB, et al. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer. 2011. 10: 12.
7.Chang WW, Hu FW, Yu CC, et al. Quercetin in elimination of tumor initiating stem‐like and mesenchymal transformation property in head and neck cancer. Head & neck. 2013. 35: 413-419.
8.Zhao Y, Guo Y, Gu X. Salvianolic acid B, a potential chemopreventive agent, for head and neck squamous cell cancer. Journal of oncology. 2011. 2011.
9.Beck DJ, Brubaker RR. Effect of cis-platinum (II) diamminodichloride on wild type and deoxyribonucleic acid repair-deficient mutants of Escherichia coli. Journal of bacteriology. 1973. 116: 1247-1252.
10.Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. 2001.
11.Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology. 2014. 740: 364-378.
12.Jones EV, Dickman MJ, Whitmarsh AJ. Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochemical Journal. 2007. 405: 617-623.
13.Fuertes M, Castilla J, Alonso C, et al. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Current medicinal chemistry. 2003. 10: 257-266.
14.Wang J, Wu GS. Role of autophagy in cisplatin resistance in ovarian cancer cells. Journal of Biological chemistry. 2014. 289: 17163-17173.
15.Ondrej M, Cechakova L, Durisova K, et al. To live or let die: Unclear task of autophagy in the radiosensitization battle. Radiotherapy and Oncology. 2016. 119: 265-275.
16.Singh M, Bhatnagar P, Srivastava AK, et al. Enhancement of cancer chemosensitization potential of cisplatin by tea polyphenols poly (lactide-co-glycolide) nanoparticles. Journal of biomedical nanotechnology. 2011. 7: 202-202.
17.Kusumoto M, Kamobayashi H, Sato D, et al. Alleviation of cisplatin-induced acute kidney injury using phytochemical polyphenols is accompanied by reduced accumulation of indoxyl sulfate in rats. Clinical and experimental nephrology. 2011. 15: 820-830.
18.Yüce A, Ateşşahin A, Çeribaşı AO, et al. Ellagic Acid Prevents Cisplatin‐Induced Oxidative Stress in Liver and Heart Tissue of Rats. Basic & clinical pharmacology & toxicology. 2007. 101: 345-349.
19.Yang Y-I, Ahn J-H, Choi YS, et al. Brown algae phlorotannins enhance the tumoricidal effect of cisplatin and ameliorate cisplatin nephrotoxicity. Gynecologic oncology. 2015. 136: 355-364.
20.Foo L, Lu Y, McNabb W, et al. Proanthocyanidins from Lotus pedunculatus. Phytochemistry. 1997. 45: 1689-1696.
21.Yi Y, Sun J, Xie J, et al. Phenolic profiles and antioxidant activity of lotus root varieties. Molecules. 2016. 21: 863.
22.Yen G-C, Duh P-D, Su H-J. Antioxidant properties of lotus seed and its effect on DNA damage in human lymphocytes. Food Chemistry. 2005. 89: 379-385.
23.Tu C, Li X, Yang J, et al. Experimental study of lotus leaf alkaloids role in weight loss in obese rats with hyperlipidemia. J JiangXi Coll Tradit Chin Med. 2001. 13: 120-121.
24.Kashiwada Y, Aoshima A, Ikeshiro Y, et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure–activity correlations with related alkaloids. Bioorganic & medicinal chemistry. 2005. 13: 443-448.
25.Ling Z-Q, Xie B-J, Yang E-L. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. Journal of agricultural and food chemistry. 2005. 53: 2441-2445.
26.王廷軒. 體內和體外研究蓮蓬萃取物成分對於胰島beta細胞免於氧化性損傷之保護作用. 中山醫學大學醫學檢驗暨生物技術學系碩士班論文. 2015.
27.Duan Y, Zhang H, Xie B, et al. Whole body radioprotective activity of an acetone–water extract from the seedpod of Nelumbo nucifera Gaertn. seedpod. Food and Chemical Toxicology. 2010. 48: 3374-3384.
28.Gong Y, Liu L, Xie B, et al. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Behavioural Brain Research. 2008. 194: 100-107.
29.Wu Q, Li S, Li X, et al. A significant inhibitory effect on advanced glycation end product formation by catechin as the major metabolite of lotus seedpod oligomeric procyanidins. Nutrients. 2014. 6: 3230-3244.
30.Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007. 35: 495-516.
31.Putcha GV, Harris CA, Moulder KL, et al. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J Cell Biol. 2002. 157: 441-453.
32.Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006. 25: 4798.
33.Biology Dictionary. 2016.
34.He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annual review of genetics. 2009. 43.
35.Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of cell biology. 1967. 33: 437-449.
36.Baba M, Osumi M, Ohsumi Y. Anaysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell structure and function. 1995. 20: 465-471.
37.National Cancer Institute. 2017.
38.Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington''s disease in an mTOR-independent autophagy pathway. Nature chemical biology. 2008. 4: 295.
39.Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson''s disease. Histology and histopathology. 1997. 12: 25-32.
40.Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011. 469: 323.
41.Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer research. 2005. 65: 3336-3346.
42.Levine B. Cell biology: autophagy and cancer. Nature. 2007. 446: 745.
43.Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. The Journal of clinical investigation. 2007. 117: 326-336.
44.Chaabane W, User SD, El-Gazzah M, et al. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Archivum immunologiae et therapiae experimentalis. 2013. 61: 43-58.
45.Cohignac V, Landry MJ, Boczkowski J, et al. Autophagy as a possible underlying mechanism of nanomaterial toxicity. Nanomaterials. 2014. 4: 548-582.
46.Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature cell biology. 2006. 8: 688.
47.Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature cell biology. 2007. 9: 1142.
48.Mizushima N, Kuma A, Kobayashi Y, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of cell science. 2003. 116: 1679-1688.
49.Tanida I, Sou Y-s, Ezaki J, et al. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3-and GABAA receptor-associated protein-phospholipid conjugates. Journal of Biological Chemistry. 2004. 279: 36268-36276.
50.Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. The international journal of biochemistry & cell biology. 2004. 36: 2503-2518.
51.Bjrky G, Lamark T, Pankiv S, et al. Monitoring autophagic degradation of p62/SQSTM1. Methods in enzymology. 2009. 452: 181-197.
52.Zhao X-g, Sun R-j, Yang X-y, et al. Chloroquine-enhanced efficacy of cisplatin in the treatment of hypopharyngeal carcinoma in xenograft mice. PLoS One. 2015. 10: e0126147.
53.Skvortsov S, Dudas J, Eichberger P, et al. Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC). British journal of cancer. 2014. 110: 2677.
54.Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998. 1305-1308.
55.Slee EA, Adrain C, Martin SJ. Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. Journal of biological Chemistry. 2001. 276: 7320-7326.
56.Scarlett JL, Murphy MP. Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS letters. 1997. 418: 282-286.
57.Heiskanen KM, Bhat MB, Wang H-W, et al. Mitochondrial Depolarization Accompanies Cytochrome cRelease During Apoptosis in PC6 Cells. Journal of Biological Chemistry. 1999. 274: 5654-5658.
58.Yin X-M, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. nature. 1994. 369: 321.
59.Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005. 120: 237-248.
60.Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA: a cancer journal for clinicians. 2011. 61: 69-90.
61.Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011. 3: 1351-1371.
62.Liu D, Yang Y, Liu Q, et al. Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Medical oncology. 2011. 28: 105-111.
63.Xu J, Rong S, Xie B, et al. Memory impairment in cognitively impaired aged rats associated with decreased hippocampal CREB phosphorylation: reversal by procyanidins extracted from the lotus seedpod. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2010. 65: 933-940.
64.Duan Y, Zhang H, Xu F, et al. Inhibition effect of procyanidins from lotus seedpod on mouse B16 melanoma in vivo and in vitro. Food chemistry. 2010. 122: 84-91.
65.Zhiqun L. Antioxidation Action of Procyanidins Extract From the lotus seedpod on liver lipid [J]. Food Science. 2002. 7: 024.
66.Qun LZ, Jun XB, JIANG T, et al. Protective effects of procyanidins'' extract from the lotus'' seedpod on experimental myocadial injury in rat [J]. Chinese Pharmacological Bulletin. 2001. 6: 023.
67.Durairaj B, Dorai A. Evaluation of Antitumor and in vivo antioxidant potentials of Nelumbo Nucifera Gaertn (white and pink) flowers in Ehrlich Ascites Carcinoma mice. Journal of Pharmacy Research Vol. 2010. 3: 2483-2487.
68.Liu C-P, Tsai W-J, Lin Y-L, et al. The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life sciences. 2004. 75: 699-716.
69.Yang M-Y, Chang Y-C, Chan K-C, et al. Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. European Journal of Integrative Medicine. 2011. 3: e153-e163.
70.Liu C-M, Kao C-L, Wu H-M, et al. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules. 2014. 19: 17829-17838.
71.Poornima P, Quency RS, Padma VV. Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food chemistry. 2013. 136: 659-667.
72.Poornima P, Kumar VB, Weng CF, et al. Doxorubicin induced apoptosis was potentiated by neferine in human lung adenocarcima, A549 cells. Food and chemical toxicology. 2014. 68: 87-98.
73.Guon TE, Chung HS. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Oncology letters. 2016. 11: 2463-2470.
74.Karki R, Rhyu D-Y, Kim D-W. Effect of Nelumbo nucifera on Proliferation, Migration and Expression of MMP-2 and MMP-9 of rSMC, A431 and MDA-MB-231. Korean Journal of Plant Resources. 2008. 21: 96-102.
75.何静, 吴磊, 李鹏霞, et al. 莲蓬壳提取物不同极性部位的生物活性. 江苏农业学报. 2015. 31: 679-684.
76.ZHANG H-h, DUAN Y-q, CHEN Q, et al. Study on the anti-tumor activities of Proanthocyanidins from Lotus seedpod (LSPC) in vitro [J]. Food Science and Technology. 2007. 10: 103.
77.Xiao J-S, Xie B-J, Cao Y-P, et al. Characterization of oligomeric procyanidins and identification of quercetin glucuronide from lotus (Nelumbo nucifera Gaertn.) seedpod. Journal of agricultural and food chemistry. 2012. 60: 2825-2829.
78.Sharma H, Sen S, Singh N. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer biology & therapy. 2005. 4: 949-955.
79.Tang D, Kang R, Xiao W, et al. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. American journal of respiratory cell and molecular biology. 2009. 41: 651-660.
80.Hasima N, Ozpolat B. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell death & disease. 2014. 5: e1509.
81.Vergote D, Cren-Olivé C, Chopin V, et al. (−)-Epigallocatechin (EGC) of green tea induces apoptosis of human breast cancer cells but not of their normal counterparts. Breast cancer research and treatment. 2002. 76: 195-201.
82.HE J-h, LI Y-g, ZHANG P. Effects on proliferation and apoptosis of HepG_2 cell lines by small interfering RNA targeted apollon combined with procyanidin [J]. Anhui Medical and Pharmaceutical Journal. 2013. 4: 004.
83.Zhang P, Sun S, Li N, et al. Rutin increases the cytotoxicity of temozolomide in glioblastoma via autophagy inhibition. Journal of neuro-oncology. 2017. 132: 393-400.
84.Li J, Hou N, Faried A, et al. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Annals of surgical oncology. 2009. 16: 761-771.
85.賴彥勳. 蓮蓬萃取物應用於保肝護腎之研究. 中山醫學大學營養學系碩士班論文. 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊