跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭亦成
研究生(外文):Yi-Cheng Hsiao
論文名稱:精密機械製造業-航太零組件金屬粉塵暴露調查
論文名稱(外文):A Survey on Workers’ Exposure to Dusts and Heavy Metals during Manufacturing Aerospace Component in Precision Machine Industry
指導教授:劉宏信劉宏信引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:職業安全衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:117
中文關鍵詞:智慧機械精密機械製造業航太零組件感應耦合電漿原子放射光譜儀間質性肺部疾病阿茲海默症
外文關鍵詞:intelligent machineryprecision machinery manufacturingaerospace componentinductively coupled plasma optical emission spectrometerinterstitial lung disease
相關次數:
  • 被引用被引用:1
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
面對全球競爭,政府需推動智慧機械產業生態體系提升產品製造的速度、精度及附加價值。美國飛機製造大廠-波音預測,未來20年將有41,030架新飛機的需求,總產值高達6.1兆美元,其中又以亞太地區的需求量最大,特別是機體結構、發動機、起落架等零組件,將帶動台灣相關廠商龐大商機。
精密機械製造業航太零組件製程,包括研磨、鑽孔、切割等電腦化數值控制(Computer Numerical Control,CNC)工具機加工。而這些製程會使作業人員暴露於金屬粉塵,經呼吸作用從鼻腔進入肺部深層,進一步造成肺部及神經等相關症狀,如間質性肺部疾病(Intersstitial Lung Disease,ILD)、阿茲海默症 (Alzheimer''s Disease,AD)等。本研究主要係調查精密機械製造業事業單位製程與作業模式、原物料使用狀況、危害物種類及勞工危害暴露之健康影響評估。
本研究中利用問卷調查蒐集、分析行業特性,以實際作業環境採樣來捕集金屬粉塵並以感應耦合電漿原子放射光譜儀分析結果,評估工廠的環境及健康風險評估。
本研究選取5間工廠,工廠分析結果大多以鋁為主要的暴露金屬元素,其次是鎳、鈷、鐵、鉛……等。鋁金屬平均濃度最高為D工廠打磨區,其值為805.3(µg/m3)、次高為D工廠鋁件焊接區,其值為38.6(µg/m3)。本研究結果發現5間工廠的粉塵暴露量符合目前法令標準,但若根據暴露評估準則的標準計算其總致癌風險均高於職場可接受風險1*10-3,尤其以E工廠為最高,其值為0.476,其中鈷金屬的致癌風險貢獻量是造成此家工廠總致癌風險提高的原因。非致癌危害商數結果中發現,E工廠(28.5)最高,其次為B工廠(4.03)。因此,特別建議E、B、D工廠應加強局部排氣工程,並在作業環境控制未完善前,提供作業人員呼吸防護具的配戴,或以行政管理措施減少作業工人暴露時間。
Because of global competition, the Government needs to use intelligent machinery to improve the speed of product manufacturing, accuracy and additional value. Boeing, the US famous aircraft manufacturer, predicts that there will be 41,030 new aircraft in the next 20 years, with a total value of 6.1 trillion US dollars, of which the Asian region has the largest demand, especially the fuselage construction, power plant, landing gear and other component. These parts will make the relevant manufacturers in Taiwan to bring huge business opportunities.
The process of Manufacturing Aerospace Component in Precision Machine Industry, including grinding, drilling, cutting and other machine tool processing of Computer Numerical Control (CNC). These processes can make workers expose to metal dust by respiration from the nasal cavity into the deep lungs, furthermore, it will cause lung and nerve-related symptoms, such as interstitial lung disease (ILD), Alzheimer''s disease (AD), etc. The purpose of this study is investigate the process of the precision machinery manufacturing industry, operating modes, material using status, hazard species and health impact assessment of worker’s exposure.
The study will use a questionnaire survey to collect industrial characteristics; also, we capture metal dust by sampling and analyze result by ICP-OES to assess the environment and health risk of the factory.
Five factories had been study in this project. The parts of aerospace factories are mostly aluminum as the main metal elements, followed by Nickel, Cobalt, Iron, lead, etc. The results of this study found that the exposure of 5 factories was below the standard, but if calculated according to the Guidelines for Estimating Exposure, total carcinogenic risk is higher than the acceptable risk 10-3 of workplace, and especially the E factory is the highest. Among them, the carcinogenic risk contribution of Cobalt metal increased the total carcinogenic risk of the factory. From the non-carcinogenic hazard quotient, it found that the non-carcinogenic hazard quotient in E factory were much higher, followed by D factory. Therefore, it suggested that E, B and D factories should strengthen Operating environment control engineering. When the operating environment control works are not completed,providing the wearing of respiratory protective equipment for workers or reduce exposure time by administrative measures.
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 8
1.1研究背景 8
1.2研究動機 17
1.3研究目的 18
第二章 文獻回顧 19
2.1金屬粉塵暴露 19
2.2相關職業病暴露案例 22
2.3 金屬粉塵動物試驗 24
2.4 金屬危害描述 25
2.5 金屬粉塵容許濃度 29
第三章 研究與方法 30
3.1研究架構 30
3.2作業環境監測 31
3.3統計分析 35
第四章 結果與討論 37
4.1工廠描述 37
4.2金屬粉塵採樣結果評估 38
4.3金屬粉塵健康風險評估 59
第五章 結論與建議 71
5.1結論 71
5.2建議 73
第六章 參考文獻 74
第七章 附錄 78
附錄一 危害物暴露狀況調查 78
附錄二 金屬濃度分析結果 84
附錄三 問卷調查結果-個人呼吸防護具使用情形 95
附錄四 環境分析品管記錄表 96
1.精密機械研究發展中心:精密機械實踐智慧製造分享;2016。
2.吳東權:台灣精密機械產業之發展。百年紀念專刊(中工高雄會刊)
2011;18(4)。
3.經濟部:五大產業創新研發計畫智慧機械產業推動方案;2015。
4.經濟部工業局:五大產業創新研發計畫-智慧機械產業推動方案;
2016。
5.行政院:重要施政成果,產業創新;2018。
6.陳玉鳳:A-I-M航太工具機產業技術大聯盟誕生;2015。
7.李貴華、賀增原:簡述軍機國造之現況。經濟部航空產業發展推動小組
產業分析報告2012。
8.經濟部工業局地區產整合發展計畫:飛到青天的航太產業篇;2017。
9.經濟部技術處:2017巴黎航太展對臺灣航空零組件加工機發展的啟示;
2017。
10.雷震台:台灣航空產業發展現況與未來展望。中華民國航空太空學會
會刊,Vol.1;2014。
11.曾婉如:航空市場與材料進展趨勢;2015。
12.經濟部航空產業發展推動小組:我國航空產業歷年產值;2018。
13.Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun Y.,
Wu, J.. Bioaccessibility and health risk of arsenic and
heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP
and PM2.5, Atmospheric Environment, 57, 146–152., 2012.
14.行政院勞動部勞動及職業安全衛生研究所:工業粉塵操作安全IOSH 安
全資料表;2000。
15.Natusch, D. F. S., and J. R.Wallace, Urban aerosol
toxicity: The influence of particle size. Science, 186:
695–699, 1974.
16.Peters, T. M., Heitbrink, W. A., Evans, D. E., Slavin,
T.J., Maynard A.D. The mapping of fine and ultrafine
particle concentrations in an engine machining and
assembly facility. Annals of Occupational Hygiene,
50(3),249–257., 2006.
17.Cheng, Yu-Hsiang, Chao, Yen-Chi, Wu, Cheng-Han, Tsai,
Chuen-Jinn, Uang, Shi -Nian, Shih, Tung-Sheng.
Measurements of ultrafine particle concentrations and
size distribution in an iron foundry. Journal of
Hazardous Materials, 158: 124–130., 2008.
18.Evans D.E, Heitbrink W.A, Slavin T.J, Peters T.M.
Ultrafine and respirable particles in an automotive grey
iron foundry. Occupational Hygiene, 52, 9–21., 2008.
19.Buonanno G., Morawska L., Stabile L. Exposure to welding
particles in automotive plants. Aerosol Science, 42:
295–304., 2011.
20.Hutter Hans Peter, Wallner Peter, Moshammer Hanns, and
Marsh Gary. Dust and Cobalt Levels in the Austrian
Tungsten Industry: Workplace and Human Biomonitoring
Data. International Journal of Environmental Research
and Public Health,13: 931., 2016
21.王安慶、羅錦泉:硬金屬肺病,一個案報告暨文獻回顧。中華職業醫
學雜誌; 19(3) : 165-169, 2012。
22.Nemery B, Verbeken EK, Demedts M. Giant cell
interstitial pneumonia (hard metal lung disease, cobalt
lung. Semin Respir Crit Care Med, 22: 435–448., 2001.
23.Takada Toshinori, oriyama Hiroshi, Suzuki Eiichi.
Elemental analysis of occupational and environmental
lung diseases by electron probe microanalyzer with
wavelength dispersive spectrometer. Respiratory
investigation, 52: 5–13., 2014
24.Menon B, Sharma A, Kripalani J. Giant cell interstitial
pneumonia in a 60-year-old female without hard metal
exposure. Respiration, 73: 833–835., 2006
25.Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J,
Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V, et
al. Human health risk assessment for aluminium,
aluminium oxide, and aluminium hydroxide. Toxicology and
Environmental Health B Critical Reviews. 10 SUPPL 1: 1-
269., 2007.
26.Zawilla NH, Taha FM, Kishk NA, Farahat SA, Farghaly M,
Hussein M. Occupational exposure to aluminum and its
amyloidogenic link with cognitive functions. Inorganic
Biochemistry. 139: 57–64., 2014.
27.Nurul Ainun Hamzah, Shamsul Bahri Mohd Tamrin, Noor
Hassim Ismail. Metal Dust Exposure and Respiratory
Symptoms among Steel Workers: A Dose-Response
Relationship. Collaborative Research on Internal
Medicine & Public Health. Vol.7(3)., 2015.
28.Junaid M, Malik RN, Pei DS. Health hazards of child
labor in the leather products and surgical instrument
manufacturing industries of Sialkot.Pakistan
Environmental Pollution, 226: 198-211., 2017.
29.Tanaka Junichi, Moriyama Hiroshi, Terada Masaki,
Toshinori Takada, Eiichi Suzuki, Ichiei Narita,
Yoshinori Kawabata, Tetsuo Yamaguchi, Akira Hebisawa,
Fumikazu Sakai, Hiroaki Arakawa, Tanaka J, Moriyama H,
et al. An observational study of giant cell interstitial
pneumonia and lung fibrosis in hard metal lung disease.
BMJ Open, 4(3)., 2014.
30.Chu Hai Qing, Liu Jin, Ming Liu, Heart & Lung. Case of
interstitial lung disease possibly induced by exposure
to iron dust. The Journal of Acute and Critical Care.
41(2): 196–199., 2012
31.Mindy J, Hull and Jerrold L. Aluminum Welding Fume-
Induced Pneumoconiosis. Human Pathology, 33(8): 819–
825., 2002.
32.Sauni R, Linna A, Oksa P, Nordman H, Tuppurainen M,
Uitti J. Cobalt asthma-a case series from a cobalt
plant. Occup Med (Lond). 60(4): 301-6., 2010.
33.Behl M, Stout MD, Herbert RA, Dill JA, Baker GL, Hayden
BK, Roycroft JH, Bucher JR, Hooth MJ. Comparative
toxicity and carcinogenicity of soluble and insoluble
cobalt compounds. Toxicology, 333: 195-205., 2015.
34.Colomina MT, Roig JL, Torrente M, Vicens P, Domingo JL.
Concurrent exposure to aluminum and stress during
pregnancy in rats: Effects on postnatal development and
behavior of the offspring. Neurotoxicology and
Teratology, 27(4): 565-574., 2005
35.國家環境毒物研究中心:環境毒物知多少;2014。
36.National Institute for Occupational Safety and Health
(NIOSH):NIOSH Pocket Guide to Chemical Hazards;2016。
37.Occupational Safety and Health Administration (OSHA):
Chemical Sampling Information;2012。
38.行政院勞動部:勞工作業環境有害物質容許濃度標準;2014。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top