跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/08 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張若愚
研究生(外文):Jo-Yu chang
論文名稱:3D列印牙科樹脂模型之精準度與表面性質
論文名稱(外文):Accuracy and Surface Property of Dental Resin Model with 3D Printing Technique
指導教授:燕敏
指導教授(外文):Min Yan
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:口腔材料科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:數位模型精準度二次光固化三維列印表面性質
外文關鍵詞:digital dental modelaccuracypost cure3d printingsurface property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
3D列印中最早發明的技術為立體光刻技術,立體光刻技術常用於牙科模型之製作,不同的光後固化時間可能對牙科樹脂模型之精準度造成影響,而目前在臨床上尚未有一個使用規範。本研究目的是探討牙科3D列印,以不同的列印層厚與不同的光後固化時間,對3D列印牙科樹脂模型之精準度以及表面性質的影響。使用繪圖軟體設計實驗用方體模型與仿臨床牙科模型,經由3D列印機搭配原廠樹脂模型材料進行列印,每層列印厚度分為25µm與100µm(T25, T100),之後使用光固化機進行後固化;方體模型後固化時間(Post-Cure, PC)分成0、10、20、30、60分鍾。仿牙科臨床模型後固化時間為5、10、20分鐘。方體模型(長、寬、高)與牙科模型(支台齒長、寬、高度、真直度、直徑、真圓度與各中心點連線)在不同時間點進行精準度之量測;並使用表面粗度儀測量方體模型表面粗糙度(Ra),與使用微小硬度儀測量表面硬度(HV)。結果顯示方體模型在T100組的精準度優於T25組。在臨床牙科模型中T25PC5的精準度最好,但隨著光後固化時間的增加,精準度並無變好;而T100組的牙科模型中,光後固化10分鐘組可獲得較好的精準度,5分鐘與20分鐘組精準度較差。在T25組試片的Ra值(1.7-2.0µm)比T100組小,T25組的硬度(5.0-7.0HV)比T100組大。結論以每層列印厚度25µm列印的牙科模型後固化時間5分鐘即可獲得最佳的模型精準度與表面性質。
Stereolithography is often used in the production of dental models. Different post-curing times may affect the accuracy of the dental resin model. Currently, there is no clinical use. specification. The purpose of this study was to investigate the effects of different 3D printing, different print layer thicknesses and different post-cure times on the accuracy and surface properties of 3D printed dental resin models. Using the drawing software to design the experimental cube model and the imitation clinical dental model, print through the 3D printer with the original resin model material, each layer printing thickness is divided into 25μm and 100μm (T25, T100), then use light curing machine was post-cured, and the post-cure (PC) was divided into 0, 10, 20, 30, 60 minutes. The post-cure time of the simulated dental clinical model was 5, 10, and 20 minutes. The cube model (length, width, height) and the dental model (tooth length, width, height, straightness, diameter, roundness and connection of each center point) are measured at different time points; The surface roughness (Ra) of the cube model was measured using a surface roughness meter, and the Vickers hardness (HV) was measured using a micro-Vickers hardness tester. The results show that the accuracy of the cube model made with the T100 group is better than that in the T25 group. Each dimensional accuracy of the group made with T25PC5 condition in the clinical dental model is the best. With increasing the light curing time, not improve the accuracy of the model. Ra and HV values of T25 group are better than T100 group. These results suggested that the 3D printing resin models made with T25CT5 condition could obtain higher accuracy and surface properties.
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與研究目的 3
第二章 文獻回顧 4
2-1 傳統牙科模型 4
2-2 表面性質 (Surface Properties) 6
2-3 數位牙科的發展 7
2-4 積層製造 (Additive Manufacturing, AM) 8
2-4-1 黏著劑噴塗成型技術 (Binder Jetting, BJ) 9
2-4-2 材料擠製成型技術 (Material Extrusion, ME) 10
2-4-3 材料噴塗成型技術 (Material Jetting, MJ) 11
2-4-4 粉體熔融成型技術 (Powder Bed Fusion, PBF) 12
2-4-5 指向性能量沉積 (Directed Energy Deposition, DED) 13
2-4-6 疊層製造成型技術 (Sheet Lamination, SL) 13
2-4-7 光聚合固化技術 (Vat Photopolymerization, VP) 14
2-5 精準度與量測 17
第三章 材料與方法 18
3-1 實驗模型設計 18
3-1-1 實驗用方體模型 18
3-1-2 牙科模型 19
3-2 模型製作 20
3-3 精準度量測 21
3-4 表面粗糙度 21
3-5 表面硬度 22
3-6 統計分析 22
第四章 結果 23
4-1 方體模型精準度 23
4-1-1 方體模型在長度的精準度 23
4-1-2 方體模型在寬度的精準度 24
4-1-3 方體模型在高度的精準度 25
4-2 牙科模型精準度 26
4-2-1 支台齒直徑 26
4-2-2 支台齒真圓度 27
4-2-3 支台齒邊長 28
4-2-4 支台齒真直度 29
4-2-5 支台齒高度 30
4-2-6 支台齒間的橫向距離 31
4-2-7 支台齒間的縱向距離 32
4-3 表面粗糙度 33
4-4 硬度 34
第五章 討論 35
5-1 牙科模型之精準度 35
5-2 列印層厚度與成型角度對精準度的影響 36
5-3 表面性質對於牙科模型精準度之影響 37
5-4 光固化時間對精準度和表面性質的影響 38
第六章 結論 39
第七章 參考文獻 40

圖目錄
圖2-1 四種彈性印模材的收縮率 4
圖2-2 黏著劑噴塗成型 9
圖2-3 材料擠製成型示意圖 10
圖2-4 材料噴塗成型示意圖 11
圖2-5 粉體熔融成型示意圖 12
圖2-6 指向性能量沉積技術示意圖 13
圖2-7 Photopolymer的固化過程 14
圖2-8 Beer-Lambert relationship 15
圖2-9 SLA成型結構 16
圖3-1 量測精準度的方體模型尺寸及列印成型方向 18
圖3-2 量測表面性質的方體模型尺寸及列印成型方向 18
圖3-3 牙科模型示意圖 19
圖3-4 各支台齒中心點之間的距離 19
圖4-1 方體模型列印層厚100μm與25μm在長度上的平均值 23
圖4-2 方體模型列印層厚100μm與25μm在寬度上的平均值 24
圖4-3 方體模型列印層厚100μm與25μm在高度上的平均值 25
圖4-4 下頜模型支台齒直徑的平均誤差 26
圖4-5 下頜模型支台齒的真圓度 27
圖4-6 下頜模型支台齒長度與寬度的平均誤差 28
圖4-7 下頜模型支台齒真直度 29
圖4-8 下頜模型支台齒高度的平均誤差 30
圖4-9 下頜模型支台齒間的橫向距離 31
圖4-10 下頜模型支台齒間的縱向距離 32
圖4-11 實驗模型之表面粗糙度 33
圖4-12 各實驗模型之表面硬度 34

表目錄
表2-1 五種牙科石膏的應用 5
表3-1 方體模型與試片的實驗參數 20
表3-2 牙科模型實驗參數 20
[1] Arvin William Mann. Examination, diagnosis, and treatment planning in occlusal rehabilitation. J Prosthet Dent. 1967;17:73-78.
[2] Daron R. Stevens, Carlos Flores-Mir, Brian Nebbe, Donald W. Raboud, Giseon Heo, and Paul W. Major. Validity, reliability, and reproducibility of plaster vs digital study models: Comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofacial Orthop. 2006; 129:794-803.
[3] Ganry, L. Quilichini, J. Bandini, C. M. Leyder, P. Hersant, B. Meningaud, J. P. Three-dimensional surgical modelling with an open-source software protocol: study of precision and reproducibility in mandibular reconstruction with the fibula free flap. Int J Oral Maxillofac Surg. 2017;46:946-957.
[4] Konstantinos X. Michalakis, Vassiliki Kapsampeli, Aikaterini Kitsou Yvone Kirmanidou, Anna Fotiou, Argirios L. Pissiotis, Pasquale Lino Calvani, Hiroshi Hirayama and Yukio Kudara. Marginal adaptation of four inlay casting waxes on stone, titanium, and zirconia dies. J Prosthet Dent. 2014;112:70-78.
[5] Reza H. Heshmati, William W. Nagy, Carl G. Wirth and Virendra B. Dhuru. Delayed linear expansion of improved dental stone. J Prosthet Dent. 2002;88:26-31.
[6] Yi-Chih Chang, Chien-Hung Yu, Wen-Miin Liang, Ming-Gene Tu, San-Yue Chen. Comparison of the surface roughness of gypsum models constructed using various impression materials and gypsum products. J Dent Sci. 2016;11:23-28.
[7] T. E. Jacobson and A. J. Krol: A contemporary review of the factors involved in complete dentures. Part III: Support. J Prosthet Dent. 1983;49:306-313.
[8] Janice P. DeWald, Hiroshi Nakajima and L. James Bell. Bond strengths between elastomeric impression materials and disinfected preliminary impressions. J Prosthet Dent. 1994;71:394-399.
[9] Dimitris Papadogiannis, Roderic Lakes BS, George Palaghias, Yiannis Papadogiannis. Effect of storage time on the viscoelastic properties of elastomeric impression materials. J Prosthodont Res. 2012;56:11-18.
[10] George C. Cho and Winston W.L. Chee. Distortion of disposable plastic stock trays when used with putty vinyl polysiloxane impression materials. J Prosthet Dent. 2004;92:354-358.
[11] S Logozzo, G Franceschini, A Kilpelä, M Caponi, L Governi, L Blois. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Internet J Med Tech. 2011;5.
[12] Andreas Syrek, Gunnar Reich, Dieter Ranftl, Christoph Klein, Barbara Cerny, Jutta Brodesser. Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent. 2010;38:553-559.
[13] Sebastian B.M. Patzelt, Christos Lamprinos, Susanne Stampf, Wael Att. The time efficiency of intraoral scanners: An in vitro comparative study. J Am Dent Assoc. 2014;145:542-551.
[14] R. Nedelcu, P. Olsson, I. Nyström, J. Rydén, A. Thor. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method. J Dent. 2018;69:110-118.
[15] Richard van Noort. The future of dental devices is digital. Dent Mater. 2012;28:3-12.
[16] Christoph Vögtlin, Georg Schulz, Kurt Jäger, Bert Müller. Comparing the accuracy of master models based on digital intra-oral scanners with conventional plaster casts. Phys Med. 2016;1:20-26.
[17] Christian S. Favero, Jeryl D. English, Benjamin E. Cozad, John O. Wirthlin, Megan M. Short, and F. Kurtis Kasper. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am J Orthod Dentofacial Orthop. 2017;152:557-565.
[18] Leonardo Tavares Camardella, Oswaldo de Vasconcellos Vilella and Hero Breuning. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am J Orthod Dentofacial Orthop. 2017;151:1178-1187.
[19] Joe Bennett. Measuring UV Curing Parameters of Commercial Photopolymers used in Additive Manufacturing. Addit Manuf. 2017;18:203-212
[20] M. L. Hitge and M. M. A. Vrijhoef. The dimensional stability of complete denture impression trays. J Dent. 1988;16:227-232.
[21] Glen H. Johnson, Xavier Lepe and Tar Chee Aw. The effect of surface moisture on detail reproduction of elastomeric impressions. J Prosthet Dent. 2003;90:354-364.
[22] Alain Thouati, Etienne Deveaux, Alain Iost and Pascal Behin. Dimensional stability of seven elastomeric impression materials immersed in disinfectants. J Prosthet Dent. 1996;76:8-14.
[23] Matthew J. German, Thomas E. Carrick, John F. McCabe. Surface detail reproduction of elastomeric impression materials related to rheological properties. Dent Mater. 2008;24:951-956.
[24] Anusavice KJ, Shen C, Rawls HR. Phillips'' science of dental materials. Elsevier Health Sciences. 2013.
[25] Materials CoD, Devices. Revised American Dental Association specification No. 19 for non-aqueous, elastomeric dental impression materials. J Am Dent Assoc. 1977;94:733-741.
[26] Nur Hersek, Senay Canay, Kivanç Akça, Yalçin Çiftçi. Tensile strength of type IV dental stones dried in a microwave oven. J Prosthet Dent. 2002;87:499-502.
[27] Robert A. Lorren, Douglas J. Salter and Carl W. Fairhurst. The contact angles of die stone on impression materials. J Prosthet Dent. 1976;36:176-180.
[28] Leonardo De Cesero, Eduardo Gonçalves Mota, Luiz Henrique Burnett and Ana Maria Spohr. The influence of postpouring time on the roughness, compressive strength, and diametric tensile strength of dental stone. J Prosthet Dent. 2014;112:1573-1577.
[29] Jose M. Rodriguez, Richard V. Curtis, David W. Bartlett. Surface roughness of impression materials and dental stones scanned by non-contacting laser profilometry. Dent Mater. 2009;25:500-505.
[30] J.L. Ferracane, T.J. Hilton, J.W. Stansbury, D.C. Watts N. Silikas, N. Ilie, S. Heintze, M. Cadenaro, R. Hickel. Academy of Dental Materials guidance—Resin composites: Part II—Technique sensitivity (handling, polymerization, dimensional changes). Dent Mater. 2017; 33: 1171-1191.
[31] Claudio P. Fernandes and Nikolaos Vassilakos. Accuracy, detail reproduction, and hardness of gypsum casts produced from silicone impressions treated with glow discharge. J Prosthet Dent. 1993; 70: 457-464.
[32] J Li, I Alatli-Kut, L Hermansson. High-strength dental gypsum prepared by cold isostatic pressing. Biomaterials. 1993;14:1186-1187.
[33] Takashi MIYAZAKI, Yasuhiro HOTTA, Jun KUNII, Soichi KURIYAMA and Yukimichi TAMAKI. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater. 2009;28:44-56.
[34] WH Moörmann. The evolution of the CEREC system. J Am Dent Assoc. 2006;137:7-13.
[35] Matts Andersson, Lennart Carlsson, Magnus Persson, Bo Bergman. Accuracy of machine milling and spark erosion with a CAD/CAM system. J Prosthet Dent. 1996;76:187-193.
[36] Tariq F. Alghazzawi, MSMtE. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res. 2016;60:72-84.
[37] Xin Wang, Man Jiang, Zuowan Zhou, Jihua Gou, David Hui. 3D printing of polymer matrix composites: A review and prospective. Compos Part B Eng. 2017;110:442-458.
[38] Jian-Yuan Lee, Jia An, Chee Kai Chua. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120-133.
[39] Evan Wheat, Mihaela Vlasea, James Hinebaugh, Craig Metcalfe. Sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing. Mater Des. 2018;156:167-183.
[40] Amir Mostafaei, Erica L. Stevens, John J. Ference, David E. Schmidt, Markus Chmielus. Binder jetting of a complex-shaped metal partial denture framework. Addit Manuf. 2018;21:63-68.
[41] Laurent Chaunier, Sofiane Guessasma, Sofiane Belhabib, Guy Della Valle, Denis Lourdin, Eric Leroy. Material extrusion of plant biopolymers: Opportunities & challenges for 3D printing. Addit Manuf. 2018;21:220-233.
[42] Diana Popescu, Aurelian Zapciua, Catalin Amzab, Florin Baciuc, Rodica Marinescu. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym Test. 2018;69:157-166.
[43] Fang Peng, Bryan D. Vogt, Miko Cakmak. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit Manuf. 2018;22:197-206.
[44] Jeffrey W. Stansbury, Mike J. Idacavage. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater. 2016;32:54-64.
[45] Eduardo Salcedo, Dongcheon Baek, Aaron Berndt, Jong Eun Ryu. Simulation and validation of three dimension functionally graded materials by material jetting. Addit Manuf. 2018;22:351-359.
[46] Tuan D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate T.Q. Nguyen, David Hui. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196.
[47] Danilo IBRAHIM, Tiago Leonardo BROILO, Claiton HEITZ, Marı´lia Gerhardt DE OLIVEIRA, Helena Willhelm DE OLIVEIRA, Stella Maris Wanderlei NOBRE, Jose´ Henrique Gomes DOS SANTOS FILHO, Daniela Nascimento SILVA. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet™ models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg. 2009;37:167-173.
[48] Ravikumar Ramakrishnaiah, Abdulaziz Abdullah Al kheraif, Ashfaq Mohammad, Darshan Devang Divakar, Sunil Babu Kotha, Sree Lalita Celur, Mohamed I. Hashem, Pekka K. Vallittu, Ihtesham Ur Rehman. Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi J Biol Sci. 2017;24:787-796.
[49] M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli, C. Potrich. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295-306.
[50] John Ryan C. Dizon, Alejandro H. Espera Jr., Qiyi Chen, Rigoberto C. Advincula. Mechanical Characterization of 3D-Printed Polymers. Addit Manuf.2018;20:44-67.
[51] Sarah Wolff, Taekyung Lee, Eric Faierson, Kornel Ehmann, Jian Cao. Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V. J Manuf Process. 2016;24:397-405.
[52] James C. Haley, Julie M. Schoenung, Enrique J. Lavernia. Observations of particle-melt pool impact events in directed energy deposition. Addit Manuf. 2018;22:368-374.
[53] Bernhard Busetti, Bernhard Steyrer, Bernhard Lutzer, Rafael Reiter, Jürgen Stampfl. A hybrid exposure concept for lithography-based additive manufacturing. Addit Manuf. 2018;21:413-421.
[54] Bernhard Steyrer, Bernhard Busetti, György Harakály, Robert Liska, Jürgen Stampf. Hot Lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Addit Manuf. 2018;21:209-214.
[55] Cameron J. Bloomquist, Michael B. Mecham, Mark D. Paradzinsky, Rima Janusziewicz, Samuel B. Warner, J. Christopher Luft, Sue J. Mecham, Andrew Z. Wang, Joseph M. DeSimone. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J Control Release. 2018;278:9-23.
[56] C. Sun, N. Fang, D.M. Wu, X. Zhang. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators A. 2005;121:113-120.
[57] Paul F. Jacobs. Fundamentals of stereolithography. Proceedings of the solid freeform fabrication symposium. 1992.
[58] Xinhao Feng, Zhaozhe Yang, Stephen Chmely, Qingwen Wang, Siqun Wang, Yanjun Xie. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization. Carbohydrate Polymers. 2017; 169: 272-281.
[59] Mohammad Mahdi Emami, Farshad Barazandeh, Farrokh Yaghmaie. Scanning-projection based stereolithography: Method and structure. Sens Actuators A. 2014;218:116-124.
[60] Hui Liu, Jianying Huang, Zhong Chen, Guoqiang Chen, Ke-Qin Zhang, Salem S. Al-Deyab, Yuekun Lai. Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chem Eng J. 2017;330:26-35.
[61] Zixiang Weng, Yu Zhou, Wenxiong Lin, T. Senthil, Lixin Wu. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Compos Part A – Appl Sci Manuf. 2016;88:234-242.
[62] Ji-Young Sim, Yeon Jang, Woong-Chul Kim, Hae-Young Kim, Dong-Hwan Lee, Ji-Hwan Kim. Comparing the accuracy (trueness and precision) of models of fixed dental prostheses fabricated by digital and conventional workflows. J Prosthodont Res.2018.
[63] Loubna Shamseddine, Rola Mortada, Khaldoun Rifai, Jose Johann Chidiac. Marginal and internal fit of pressed ceramic crowns made from conventional and computer-aided design and computer-aided manufacturing wax patterns: An in vitro comparison. J Prosthet Dent. 2016;116:242-248.
[64] Aletta Hazeveld, James J. R. Huddleston Slater, Yijin Ren. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop. 2014;145:108-115.
[65] Carsten Lippold, Christian Kirschneck, Kristina Schreiber, Saleh Abukiress, Amir Tahvildari, Tatjana Moiseenko, Gholamreza Danesh. Methodological accuracy of digital and manual model analysis in orthodontics – A retrospective clinical study. Comput Biol Med. 2015;62:103-109.
[66] Soo-Yeon Kim, Yoo-Seok Shin, Hwi-Dong Jung, Chung-Ju Hwang, Hyoung-Seon Baik, Jung-Yul Cha. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am J Orthod Dentofacial Orthop. 2018;153:144-153.
[67] Mithun Rajshekar, Roberta Julian, Anne-Marie Williams, Marc Tennant, Alex Forrest, Laurence J. Walsh, Gary Wilson, Leigh Blizzard. The reliability and validity of measurements of human dental casts made by an intra-oral 3D scanner, with conventional hand-held digital callipers as the comparison measure. Forensic Sci Int. 2017;278:198-204.
[68] Yee Ling Yap, Chengcheng Wang, Swee Leong Sing, Vishwesh Dikshit, Wai Yee Yeong, Jun Wei. Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis Eng. 2017;50:275-285.
[69] Francisco Martínez-Rus, María J. Suárez, Begoña Rivera, Guillermo Pradíes. Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J Prosthet Dent. 2011;105:108-114.
[70] Wan Nurazreena Wan Hassan, Yusnilawati Yusoff, Noor Azizi Mardi. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am J Orthod Dentofacial Orthop. 2017;151:209-218.
[71] Massimo Martorelli, Salvatore Gerbino, Michele Giudice, Pietro Ausiello. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater. 2013;29:1-10.
[72] Masood SH, Rattanawong W, Iovenitti P: A generic algorithm for a best part orientation system for complex parts in rapid prototyping. J. Mater. Process. Technol. 2003;139:110-116.
[73] Xiangquan Wu, Qin Lian, Dichen Li, Zhongmin Jin. Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model. J. Mater. Process. Technol. 2017;243:184-196.
[74] Philip Duke, B. Keith Moore, Steven P. Haug, Carl J. Andres. Study of the physical properties of type IV gypsum, resin-containing, and epoxy die materials. J Prosthet Dent. 2000;83:466-473.
[75] G. WILLEMS, P. LAMBRECHTS, M. BRAEM, M. VUYLSTEKE-WAUTERS, G. VANHERLE. The surface roughness of enamel-to-enamel contact areas compared with the intrinsic roughness of dental resin composites. J Prosthodont Res. 1991;70:1299-1305.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top