|
[1] Arvin William Mann. Examination, diagnosis, and treatment planning in occlusal rehabilitation. J Prosthet Dent. 1967;17:73-78. [2] Daron R. Stevens, Carlos Flores-Mir, Brian Nebbe, Donald W. Raboud, Giseon Heo, and Paul W. Major. Validity, reliability, and reproducibility of plaster vs digital study models: Comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofacial Orthop. 2006; 129:794-803. [3] Ganry, L. Quilichini, J. Bandini, C. M. Leyder, P. Hersant, B. Meningaud, J. P. Three-dimensional surgical modelling with an open-source software protocol: study of precision and reproducibility in mandibular reconstruction with the fibula free flap. Int J Oral Maxillofac Surg. 2017;46:946-957. [4] Konstantinos X. Michalakis, Vassiliki Kapsampeli, Aikaterini Kitsou Yvone Kirmanidou, Anna Fotiou, Argirios L. Pissiotis, Pasquale Lino Calvani, Hiroshi Hirayama and Yukio Kudara. Marginal adaptation of four inlay casting waxes on stone, titanium, and zirconia dies. J Prosthet Dent. 2014;112:70-78. [5] Reza H. Heshmati, William W. Nagy, Carl G. Wirth and Virendra B. Dhuru. Delayed linear expansion of improved dental stone. J Prosthet Dent. 2002;88:26-31. [6] Yi-Chih Chang, Chien-Hung Yu, Wen-Miin Liang, Ming-Gene Tu, San-Yue Chen. Comparison of the surface roughness of gypsum models constructed using various impression materials and gypsum products. J Dent Sci. 2016;11:23-28. [7] T. E. Jacobson and A. J. Krol: A contemporary review of the factors involved in complete dentures. Part III: Support. J Prosthet Dent. 1983;49:306-313. [8] Janice P. DeWald, Hiroshi Nakajima and L. James Bell. Bond strengths between elastomeric impression materials and disinfected preliminary impressions. J Prosthet Dent. 1994;71:394-399. [9] Dimitris Papadogiannis, Roderic Lakes BS, George Palaghias, Yiannis Papadogiannis. Effect of storage time on the viscoelastic properties of elastomeric impression materials. J Prosthodont Res. 2012;56:11-18. [10] George C. Cho and Winston W.L. Chee. Distortion of disposable plastic stock trays when used with putty vinyl polysiloxane impression materials. J Prosthet Dent. 2004;92:354-358. [11] S Logozzo, G Franceschini, A Kilpelä, M Caponi, L Governi, L Blois. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Internet J Med Tech. 2011;5. [12] Andreas Syrek, Gunnar Reich, Dieter Ranftl, Christoph Klein, Barbara Cerny, Jutta Brodesser. Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent. 2010;38:553-559. [13] Sebastian B.M. Patzelt, Christos Lamprinos, Susanne Stampf, Wael Att. The time efficiency of intraoral scanners: An in vitro comparative study. J Am Dent Assoc. 2014;145:542-551. [14] R. Nedelcu, P. Olsson, I. Nyström, J. Rydén, A. Thor. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method. J Dent. 2018;69:110-118. [15] Richard van Noort. The future of dental devices is digital. Dent Mater. 2012;28:3-12. [16] Christoph Vögtlin, Georg Schulz, Kurt Jäger, Bert Müller. Comparing the accuracy of master models based on digital intra-oral scanners with conventional plaster casts. Phys Med. 2016;1:20-26. [17] Christian S. Favero, Jeryl D. English, Benjamin E. Cozad, John O. Wirthlin, Megan M. Short, and F. Kurtis Kasper. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am J Orthod Dentofacial Orthop. 2017;152:557-565. [18] Leonardo Tavares Camardella, Oswaldo de Vasconcellos Vilella and Hero Breuning. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am J Orthod Dentofacial Orthop. 2017;151:1178-1187. [19] Joe Bennett. Measuring UV Curing Parameters of Commercial Photopolymers used in Additive Manufacturing. Addit Manuf. 2017;18:203-212 [20] M. L. Hitge and M. M. A. Vrijhoef. The dimensional stability of complete denture impression trays. J Dent. 1988;16:227-232. [21] Glen H. Johnson, Xavier Lepe and Tar Chee Aw. The effect of surface moisture on detail reproduction of elastomeric impressions. J Prosthet Dent. 2003;90:354-364. [22] Alain Thouati, Etienne Deveaux, Alain Iost and Pascal Behin. Dimensional stability of seven elastomeric impression materials immersed in disinfectants. J Prosthet Dent. 1996;76:8-14. [23] Matthew J. German, Thomas E. Carrick, John F. McCabe. Surface detail reproduction of elastomeric impression materials related to rheological properties. Dent Mater. 2008;24:951-956. [24] Anusavice KJ, Shen C, Rawls HR. Phillips'' science of dental materials. Elsevier Health Sciences. 2013. [25] Materials CoD, Devices. Revised American Dental Association specification No. 19 for non-aqueous, elastomeric dental impression materials. J Am Dent Assoc. 1977;94:733-741. [26] Nur Hersek, Senay Canay, Kivanç Akça, Yalçin Çiftçi. Tensile strength of type IV dental stones dried in a microwave oven. J Prosthet Dent. 2002;87:499-502. [27] Robert A. Lorren, Douglas J. Salter and Carl W. Fairhurst. The contact angles of die stone on impression materials. J Prosthet Dent. 1976;36:176-180. [28] Leonardo De Cesero, Eduardo Gonçalves Mota, Luiz Henrique Burnett and Ana Maria Spohr. The influence of postpouring time on the roughness, compressive strength, and diametric tensile strength of dental stone. J Prosthet Dent. 2014;112:1573-1577. [29] Jose M. Rodriguez, Richard V. Curtis, David W. Bartlett. Surface roughness of impression materials and dental stones scanned by non-contacting laser profilometry. Dent Mater. 2009;25:500-505. [30] J.L. Ferracane, T.J. Hilton, J.W. Stansbury, D.C. Watts N. Silikas, N. Ilie, S. Heintze, M. Cadenaro, R. Hickel. Academy of Dental Materials guidance—Resin composites: Part II—Technique sensitivity (handling, polymerization, dimensional changes). Dent Mater. 2017; 33: 1171-1191. [31] Claudio P. Fernandes and Nikolaos Vassilakos. Accuracy, detail reproduction, and hardness of gypsum casts produced from silicone impressions treated with glow discharge. J Prosthet Dent. 1993; 70: 457-464. [32] J Li, I Alatli-Kut, L Hermansson. High-strength dental gypsum prepared by cold isostatic pressing. Biomaterials. 1993;14:1186-1187. [33] Takashi MIYAZAKI, Yasuhiro HOTTA, Jun KUNII, Soichi KURIYAMA and Yukimichi TAMAKI. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater. 2009;28:44-56. [34] WH Moörmann. The evolution of the CEREC system. J Am Dent Assoc. 2006;137:7-13. [35] Matts Andersson, Lennart Carlsson, Magnus Persson, Bo Bergman. Accuracy of machine milling and spark erosion with a CAD/CAM system. J Prosthet Dent. 1996;76:187-193. [36] Tariq F. Alghazzawi, MSMtE. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res. 2016;60:72-84. [37] Xin Wang, Man Jiang, Zuowan Zhou, Jihua Gou, David Hui. 3D printing of polymer matrix composites: A review and prospective. Compos Part B Eng. 2017;110:442-458. [38] Jian-Yuan Lee, Jia An, Chee Kai Chua. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120-133. [39] Evan Wheat, Mihaela Vlasea, James Hinebaugh, Craig Metcalfe. Sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing. Mater Des. 2018;156:167-183. [40] Amir Mostafaei, Erica L. Stevens, John J. Ference, David E. Schmidt, Markus Chmielus. Binder jetting of a complex-shaped metal partial denture framework. Addit Manuf. 2018;21:63-68. [41] Laurent Chaunier, Sofiane Guessasma, Sofiane Belhabib, Guy Della Valle, Denis Lourdin, Eric Leroy. Material extrusion of plant biopolymers: Opportunities & challenges for 3D printing. Addit Manuf. 2018;21:220-233. [42] Diana Popescu, Aurelian Zapciua, Catalin Amzab, Florin Baciuc, Rodica Marinescu. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym Test. 2018;69:157-166. [43] Fang Peng, Bryan D. Vogt, Miko Cakmak. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit Manuf. 2018;22:197-206. [44] Jeffrey W. Stansbury, Mike J. Idacavage. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater. 2016;32:54-64. [45] Eduardo Salcedo, Dongcheon Baek, Aaron Berndt, Jong Eun Ryu. Simulation and validation of three dimension functionally graded materials by material jetting. Addit Manuf. 2018;22:351-359. [46] Tuan D. Ngo, Alireza Kashani, Gabriele Imbalzano, Kate T.Q. Nguyen, David Hui. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196. [47] Danilo IBRAHIM, Tiago Leonardo BROILO, Claiton HEITZ, Marı´lia Gerhardt DE OLIVEIRA, Helena Willhelm DE OLIVEIRA, Stella Maris Wanderlei NOBRE, Jose´ Henrique Gomes DOS SANTOS FILHO, Daniela Nascimento SILVA. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet™ models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg. 2009;37:167-173. [48] Ravikumar Ramakrishnaiah, Abdulaziz Abdullah Al kheraif, Ashfaq Mohammad, Darshan Devang Divakar, Sunil Babu Kotha, Sree Lalita Celur, Mohamed I. Hashem, Pekka K. Vallittu, Ihtesham Ur Rehman. Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi J Biol Sci. 2017;24:787-796. [49] M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli, C. Potrich. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295-306. [50] John Ryan C. Dizon, Alejandro H. Espera Jr., Qiyi Chen, Rigoberto C. Advincula. Mechanical Characterization of 3D-Printed Polymers. Addit Manuf.2018;20:44-67. [51] Sarah Wolff, Taekyung Lee, Eric Faierson, Kornel Ehmann, Jian Cao. Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V. J Manuf Process. 2016;24:397-405. [52] James C. Haley, Julie M. Schoenung, Enrique J. Lavernia. Observations of particle-melt pool impact events in directed energy deposition. Addit Manuf. 2018;22:368-374. [53] Bernhard Busetti, Bernhard Steyrer, Bernhard Lutzer, Rafael Reiter, Jürgen Stampfl. A hybrid exposure concept for lithography-based additive manufacturing. Addit Manuf. 2018;21:413-421. [54] Bernhard Steyrer, Bernhard Busetti, György Harakály, Robert Liska, Jürgen Stampf. Hot Lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Addit Manuf. 2018;21:209-214. [55] Cameron J. Bloomquist, Michael B. Mecham, Mark D. Paradzinsky, Rima Janusziewicz, Samuel B. Warner, J. Christopher Luft, Sue J. Mecham, Andrew Z. Wang, Joseph M. DeSimone. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J Control Release. 2018;278:9-23. [56] C. Sun, N. Fang, D.M. Wu, X. Zhang. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators A. 2005;121:113-120. [57] Paul F. Jacobs. Fundamentals of stereolithography. Proceedings of the solid freeform fabrication symposium. 1992. [58] Xinhao Feng, Zhaozhe Yang, Stephen Chmely, Qingwen Wang, Siqun Wang, Yanjun Xie. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization. Carbohydrate Polymers. 2017; 169: 272-281. [59] Mohammad Mahdi Emami, Farshad Barazandeh, Farrokh Yaghmaie. Scanning-projection based stereolithography: Method and structure. Sens Actuators A. 2014;218:116-124. [60] Hui Liu, Jianying Huang, Zhong Chen, Guoqiang Chen, Ke-Qin Zhang, Salem S. Al-Deyab, Yuekun Lai. Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chem Eng J. 2017;330:26-35. [61] Zixiang Weng, Yu Zhou, Wenxiong Lin, T. Senthil, Lixin Wu. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Compos Part A – Appl Sci Manuf. 2016;88:234-242. [62] Ji-Young Sim, Yeon Jang, Woong-Chul Kim, Hae-Young Kim, Dong-Hwan Lee, Ji-Hwan Kim. Comparing the accuracy (trueness and precision) of models of fixed dental prostheses fabricated by digital and conventional workflows. J Prosthodont Res.2018. [63] Loubna Shamseddine, Rola Mortada, Khaldoun Rifai, Jose Johann Chidiac. Marginal and internal fit of pressed ceramic crowns made from conventional and computer-aided design and computer-aided manufacturing wax patterns: An in vitro comparison. J Prosthet Dent. 2016;116:242-248. [64] Aletta Hazeveld, James J. R. Huddleston Slater, Yijin Ren. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop. 2014;145:108-115. [65] Carsten Lippold, Christian Kirschneck, Kristina Schreiber, Saleh Abukiress, Amir Tahvildari, Tatjana Moiseenko, Gholamreza Danesh. Methodological accuracy of digital and manual model analysis in orthodontics – A retrospective clinical study. Comput Biol Med. 2015;62:103-109. [66] Soo-Yeon Kim, Yoo-Seok Shin, Hwi-Dong Jung, Chung-Ju Hwang, Hyoung-Seon Baik, Jung-Yul Cha. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am J Orthod Dentofacial Orthop. 2018;153:144-153. [67] Mithun Rajshekar, Roberta Julian, Anne-Marie Williams, Marc Tennant, Alex Forrest, Laurence J. Walsh, Gary Wilson, Leigh Blizzard. The reliability and validity of measurements of human dental casts made by an intra-oral 3D scanner, with conventional hand-held digital callipers as the comparison measure. Forensic Sci Int. 2017;278:198-204. [68] Yee Ling Yap, Chengcheng Wang, Swee Leong Sing, Vishwesh Dikshit, Wai Yee Yeong, Jun Wei. Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis Eng. 2017;50:275-285. [69] Francisco Martínez-Rus, María J. Suárez, Begoña Rivera, Guillermo Pradíes. Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J Prosthet Dent. 2011;105:108-114. [70] Wan Nurazreena Wan Hassan, Yusnilawati Yusoff, Noor Azizi Mardi. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am J Orthod Dentofacial Orthop. 2017;151:209-218. [71] Massimo Martorelli, Salvatore Gerbino, Michele Giudice, Pietro Ausiello. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater. 2013;29:1-10. [72] Masood SH, Rattanawong W, Iovenitti P: A generic algorithm for a best part orientation system for complex parts in rapid prototyping. J. Mater. Process. Technol. 2003;139:110-116. [73] Xiangquan Wu, Qin Lian, Dichen Li, Zhongmin Jin. Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model. J. Mater. Process. Technol. 2017;243:184-196. [74] Philip Duke, B. Keith Moore, Steven P. Haug, Carl J. Andres. Study of the physical properties of type IV gypsum, resin-containing, and epoxy die materials. J Prosthet Dent. 2000;83:466-473. [75] G. WILLEMS, P. LAMBRECHTS, M. BRAEM, M. VUYLSTEKE-WAUTERS, G. VANHERLE. The surface roughness of enamel-to-enamel contact areas compared with the intrinsic roughness of dental resin composites. J Prosthodont Res. 1991;70:1299-1305.
|