(3.239.33.139) 您好!臺灣時間:2021/03/05 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江翰威
研究生(外文):Han-Wei Chiang
論文名稱:以田口方法電泳沉積氧化石墨烯進行表面分析
論文名稱(外文):Surface analysis of electrophoretic deposition graphene oxide using Taguchi method
指導教授:何青原
指導教授(外文):Ching-Yuan Ho
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:氧化石墨烯田口方法電泳沉積氧化銦錫
外文關鍵詞:Graphene OxideTaguchi MethodsElectrophoretic DepositionIndium Tin Oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究採用田口方法(Taguchi Methods),以Hummers法合成粉狀氧化石墨烯,並以電泳沉積方式將氧化石墨烯沉積於氧化銦錫(ITO)基板上,進行表面分析並觀察表面型態找出電泳沉積之最佳條件。
在田口L9(34)直交表參數中,改變電壓、陰極陽極距離、溫度、重量百分濃度等參數電泳沉積氧化石墨烯。由掃描式電子顯微鏡可觀察出氧化石墨烯沉積的心狀皺褶樣貌差異性,也可觀察石墨堆疊特性現象;能量散佈分析儀器結果可看出氧化石墨烯的分布大宗為碳元素與氧元素,且比例接近1:1,氧化效果良好。此外,實驗結果發現在接觸角量測方面,S/N比反應因子的最大控制因子為溫度,次要為濃度。在參數條件為電壓7V,陰極陽極距離14 mm,溫度55℃,濃度1.5%時,得到最小角度為28度;原子力顯微鏡測量結果,在參數條件為電壓7V,陰極陽極距離14mm,溫度55℃,濃度1.5%時,得到均方根粗糙度Rq為30.1nm與中心線平均粗糙度Ra為19.6nm,粗糙度較為平緩,S/N比反應因子的最大控制因子與接觸角量測所得結果相同都是溫度為最大控制因子。
本實驗透過接觸角量測與原子力顯微鏡的結果,經由S/N比計算能得到溫度為最大控制因子,且找出最佳條件參數電壓為5V,陰極陽極距離18mm,溫度40℃,重量百分濃度1%。藉由此次表面結構與性質實驗分析,能提升未來研究生醫技術、防腐抗蝕、電極效益、高分子複合材料、塗料運用。
In this study, Taguchi Methods were used to synthesize powdered graphene oxide by Hummers method. The graphene oxide was deposited on indium tin oxide (ITO) substrate by electrophoretic deposition, and the surface morphology was observed and found electrophoretic deposition of the best conditions.
In Taguchi''s L9(34) orthogonal arrays parameters, graphene oxide was electrophoretically deposited by changing parameters such as voltage and anode distance, temperature and weight percent concentration. Graphene oxide deposited heart-shaped pleated appearance differences can be observed by scanning electron microscope , and also observed the phenomenon of graphite stacking characteristics; Energy dispersion spectrometer instrument results show that carbon and oxygen elements in graphene oxide are majority, and the ratio close to 1: 1, means that the oxidation effect is good. In addition, the experimental results show that in the contact angle measurement, the maximum control factor of the S/N ratio reaction factor is the temperature. Secondary is concentration .Under the conditions of the parameters of the voltage of 7V, cathode anode distance 14 mm, temperature 55℃and concentration 1.5% , a minimum angle of 28 degrees was obtained. Atomic force microscope measurement results showed that the root mean square roughness Rq was 30.1nm and the center line average roughness Ra was 19.6nm under conditions of voltage of 7V, adistance of 14mm of cathode and anode, temperature of 55℃and concentration of 1.5% . The roughness is relatively smooth. S/N ratio of the maximum reaction factor control factor and contact angle measurement results are the same temperature is the maximum control factor.
In this experiment, through the contact angle measurement and atomic force microscope results, the temperature can be obtained as the maximum control factor through the S/N ratio calculation, and the optimal parameters were found to be 5V, cathode anode distance 18mm, temperature 40℃, concentration 1% . By the surface structure and nature of the experimental analysis, to enhance the future of postgraduate medical technology, corrosion resistance, electrode efficiency, polymer composite materials, paint use.
目錄

摘要.....................................................Ⅰ
Abstract................................................Ⅱ
誌謝.....................................................Ⅲ
目錄.....................................................Ⅳ
圖目錄...................................................Ⅵ
表目錄...................................................Ⅷ
第一章 緒論.............................................1
1.1 前言.............................................1
1.2 研究目的與動機....................................2
1.3 氧化石墨烯簡介....................................3

第二章 基礎理論與文獻回顧.................................6
2.1 電泳沉積原理......................................6
2.2 Hummers method...................................7
2.3 田口方法原理......................................8
2.3.1田口穩健設計.........................................8
2.3.2田口品質特性........................................10
2.3.3信號雜音比(S/N)與公式 ..............................11

第三章 實驗架構與步驟...................................12
3.1 實驗架構.........................................12
3.2 實驗儀器及量測設備................................14
3.3 實驗藥品與耗材...................................15
3.4 實驗步驟.........................................16
3.4.1 氧化石墨烯粉體製作................................16
3.4.2 氧化石墨烯粉末製作流程............................17
3.5 製備電泳懸浮液...................................18
3.6 ITO玻璃基板表面清洗處理程序.......................20
3.7 電泳沉積氧化石墨烯於氧化因錫(ITO)工作電極..........22
3.8 接觸角量測儀.....................................23
3.9 掃描式電子顯微鏡及能量散佈分析儀器.................25
3.10 原子力顯微鏡.....................................26

第四章 結果與討論......................................28
4.1 田口方法實驗-直交表..............................28
4.2 氧化石墨烯電泳沉積表面分析........................29
4.2.1 接觸角量測(Contact Angle)........................29
4.2.2 掃描式電子顯微鏡及能量散佈分析儀器(SEM&EDS)........32
4.2.3 原子力顯微鏡(AFM)................................37
4.3 氧化石墨烯電泳沉積最佳參數條件總結.................43

第五章 結論與未來展望...................................44
5.1 結論............................................44
5.2 未來展望.........................................45

第六章 參考文獻.........................................46


圖目錄

圖 1.1 石墨烯晶格結構圖....................................3
圖 1.2 石墨形成氧化石墨烯化學結構示意圖.....................4
圖 1.3 氧化石墨烯之粉體....................................5
圖 1.4 氧化石墨烯之SEM結構圖...............................5
圖 2.1 品質工程系統研發設計三步驟..........................10
圖 3.1 製備氧化石墨烯流程圖...............................12
圖 3.2 氧化石墨烯表面分析實驗步驟..........................16
圖 3.3 氧化石墨烯透析完成色澤變化樣貌......................17
圖 3.4 氧化石墨烯懸浮液體.................................19
圖3.5 ITO玻璃基板清洗步驟流程圖...........................20
圖3.6 電泳沉積氧化石墨烯示意圖............................22
圖3.7 接觸角量測儀器(KRUSS)..............................22
圖3.8 液體滴在個體表面上的接觸角示意圖.....................23
圖3.9 掃描式電子顯微鏡(JEOL)& 能量散佈分析儀器(JEOL).......24
圖3.10 原子力顯微鏡(BRUKER)..............................26
圖4.1 接觸角量測角度樣貌..................................29
圖4.2 接觸角之S/N比因子反應圖.............................31
圖4.3 氧化石墨烯電泳沉積氧化銦錫SEM正視圖倍率200...........33
圖4.4 氧化石墨烯電泳沉積氧化銦錫SEM正視圖倍率2000..........34

圖4.5 氧化石墨烯電泳沉積氧化銦錫SEM側視圖.................35
圖4.6 氧化石墨烯EDX元素分布..............................36
圖4.7 氧化石墨烯EDX光譜.................................36
圖4.8 原子力顯微鏡示意圖.................................37
圖4.9 AFM表面粗糙度3D圖.................................38
圖4.10 AFM表面粗糙度Rq之S/N比因子反應圖...................41
圖4.11 AFM表面粗糙度Ra之S/N比因子反應圖...................41


表目錄

表3.1 田口L9(34)實驗直交表...............................13
表3.2 電泳沉積氧化石墨烯所使用的實驗儀器及量測設備..........14
表3.3 電泳沉積氧化石墨烯所使用的實驗藥品與耗材..............15
表4.1 田口L9(34)直交表參數條件設定........................28
表4.2 接觸角量測數據與S/N比效應表.........................30
表4.3 接觸角量測因子水準表................................30
表4.4 接觸角測量之最佳參數條件............................31
表4.5 AFM表面粗糙度Rq與Ra量測數據.........................39
表4.6 AFM表面粗糙度Rq數據與S/N比效應表....................39
表4.7 AFM表面粗糙度Ra數據與S/N比效應表....................40
表4.8 AFM表面粗糙度Rq因子水準表...........................40
表4.9 AFM表面粗糙度Ra因子水準表...........................40
表4.10 AFM表面粗糙度Rq與Ra之最佳參數條件...................42
[1] S. W. Chong, C. W. Lai, S. B. Abd Hamid, F. W. Low, and W. W. Liu, "Simple Preparation of Exfoliated Graphene Oxide Sheets Via Simplified Hummer''s Method, " Advanced Materials Research, vol. 1109, pp. 390-394, 2015.
[2] S. J. Richard Prabakar, Y. H. Hwang, E. G. Bae, D. K. Lee, and M. Pyo, " Graphene Oxide as A Corrosion Inhibitor for The Aluminum Current Collector in Lithium Ion Batteries, " Carbon, vol. 52, pp. 128-136, 2013.
[3] M. R. Lopez and C. G. Salzmann, " A Simple and Mild Chemical Oxidation Route to High-Purity Nano-Graphene Oxide, " Carbon, vol. 106, pp. 56-63, 2016.
[4] A. Allahbakhsh, F. Sharif, and S. Mazinani, " The Influence of Oxygen- Containing Functional Groups on The Surface Behavior and Roughness
Characteristics of Graphene Oxide, " Nano, vol. 8, pp. 1350045, 2013.
[5] B. C. Brodie, " On The Atomic Weight of Graphite, " Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259 ,1859.
[6] S. E. M. Ardakani, B. S. M. Singh, and N. M. Mohammed, " Improving The Quality of Graphene Oxide Prepared by Hummer''s Method by Using Centrifugation, " Applied Physics Letters, vol. 1669, pp. 020027, 2015.
[7] L. Staudenmaier, " Verfahren Zur Darstellung Der Graphitsaure, " Berichte der Deutschen Chemischen Gesellschaft, vol. 31, pp. 1481-1487, 1898.
[8] W. Wang, L. Ting, X.-W. Liu, and L.Xuan, " Study of Capillary Electrophoresis Chip with Conductivity Detection, " MEMS, MOEMS, and Micromachining II, vol. 6186, pp. 61860-61874, 2006.
[9] W. S. Hummers and R. E. Offeman, " Preparation of Graphitic Oxide, "
Journal of the American Chemical Society, vol. 80, pp. 1339, 1958.
[10] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, and Q. Wu, " Graphene Oxide: The Mechanisms of Oxidation and Exfoliation, " Journal of Materials Science, vol. 47, pp. 4400-4409, 2012.
[11] S. Zhang, L. Zhu, H. Song, X. Chen, B. Wu, J. Zhou, and F. Wang, " How Graphene is Exfoliated From Graphitic Materials: Synergistic Effect of Oxidation and Intercalation Processes in Open, Semi-Closed, and Closed Carbon Systems, " Journal of Materials chemistry, vol. 22, pp. 22150-22154, 2012.
[12] A. M. Dimiev and J. M. Tour, " Mechanism of Graphene Oxide Formation, " ACS Nano, vol. 8, pp. 3060-3068, 2014.
[13] D. Torres, J. L. Pinilla, R. Moliner, and I. Suelves, "On The Oxidation Degree of Few-Layer Graphene Oxide Sheets Obtained From Chemically Oxidized Multiwall Carbon Nanotubes, " Carbon, vol. 81, pp. 405-417, 2015.
[14] S. Sheshmani and R. Amini, " Preparation And Characterization of Some Graphenebased Nanocomposite Materials, " Carbohydrate Polymers, vol. 95, pp. 38-359, 2013.
[15] A. Dimiev, D. V. Kosynkin, L. B. Alemany, P. Chaguine, and J. M. Tour, " Pristine Graphite Oxide, " Journal of the American Chemical Society, vol. 134, pp. 2815-2822, 2012.
[16] P. J. ROSS, " Taguchi Techniques For Quality Engineering, " McGraw Hill Book Company, vol. 6, pp. 112-134, 1996.
[17] L. J. Yang, T. J. Yao, and Y. C. Tai, " The Marching Velocity Of The Capillary Meniscus In A Microchannel, " Journal of Micromechanics and Microengineering, vol. 14, pp. 220-225, 2004.
[18] Y. Martin, C. C. Williams, and H. K. Wickramasinghe, " Atomic Force Microscope- Force Mapping And Profiling On A Sub 100-A scale, " Journal of Applied Physics, vol. 61, pp. 4723-4729, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔