|
Hastings, W. K. 1970. Monte Carlo Sampling Methods Using Markov Chains andTheir Applications, Biometrika, 57, 97-109.
Metropolis, N., Rosenbluth, A. W., Rosenbluth,M. N. , Teller,A. H., and Teller, E.1953. Equations of State Calculations by Fast Compution Machines, Journal of chemical Physics, 21, 1087-1091.
Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images. IEEE Trans. Patten Ann., Machine Intell.,6,721-741
Gelfand,A. E. and Smith, A. F. M. (1990).Sampling-Based Approaches to Calculating Marginal Densities. J. Am. Statist. Assoc., 85,398-409.
F. Downton, Bivariate exponential distributions in reliability theory, J. R. Stat. Soc. Ser. B 32 (1970), pp. 408-417.
W.F. Kibble, A two-variate gamma type distribution, Sankhy`a 5 (1941), pp. 137-150.
Kibble, W. F. (1941). A two-variate gamma type distribution. Sankhy˜a, 5, 137–150.
Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000). Continuous Multivariate Distributions, 1, Second edition. New York, Wiley.
Iliopoulos, G. and Karlis, D. (2003). Simulation from the Bessel distribution with applications. Journal of Statistical Computation and Simulation, 73, 491–506. 54, 385–394.
Al-Saadi, S. D. and Young, D. H. (1980). Estimators for the correlation coefficient in a bivariate exponential distribution. J. Statist. Comput. Simul., 11, 13–20.
Al-Saadi, S. D. and Young, D. H. (1982). A test for independence in a multivariate exponential distribution with equal correlation coefficient. J. Statist. Comput. Simul.,14, 219–227.
Balakrishnan, N. and Ng, H. K. T. (2001). Improved estimation of the correlation coefficient in a bivariate exponential distribution. J. Statist. Comput. Simul., 68, 173–184.
Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22, 1701- 1762.
Nagao, M. and Kadoya, M. (1971). Two-variate exponential distribution and its numerical table for engineering application,Bulletin of the Disaster Prevention Research Institute,20, No. 3, 183–215.
Kundu, D. and Gupta, R (2009). Jounral of Multivariate Analysis, Vol 100, Issue 4, p 581-593.
|