跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓國樑
研究生(外文):Kuo-Liang Han
論文名稱:主成分分析法的應用:以分析直流馬達訊號為例
論文名稱(外文):Application of Principal Component Analysis: Analysis of DC Motor Signals as an Example
指導教授:廖炯州
學位類別:碩士
校院名稱:健行科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:44
中文關鍵詞:主成份分析法(PCA)維度化簡(dimension reduction)直流馬達(DC motor)
外文關鍵詞:Principal Component Analysisdimension reductionDC motor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文包含下列的兩大主題,分別是:(a)主題一:主成分分析法(Principal Component Analysis, PCA)的研究,及(b)主題二:將主成分分析法應用於分析直流馬達的電流訊號。其中主題一的主成分分析法(PCA),它的主要功能是將資料簡化(data reduction)或維度化簡(dimension reduction)。PCA的分析過程簡述如下:(1)分析變數之間的相關性,目的是要找出這些變數之間的相關性;(2)依據分析的結果來減少變數個數或是產生另一組數量較原變數個數少的新變數。簡言之,PCA首先是從原始變數間找到它們的相依關係,而後是保留影響程度較大的變數,而去除影響程度較小的變數。如此,PCA不但達到減少變數個數的目的,也同時保留大部分的訊息。其中的主題二,是將PCA法應用於分析直流馬達(DC motor)的電流訊號。本主題二分成如下的四個部份,分別是:(a)定義馬達電流訊號之測試點;(b)尋找與儲存馬達電流訊號的測試點;(c)以PCA法選取各種馬達品質類別的主要成分;(d)各種故障馬達品質類別的辨識。本文能辨識五種的馬達品質類別,包含好的馬達品質類別(Type-good)及四種故障馬達品質類別(Type error-1~Type error-4)。經多次實驗,正確辨識率(TCA)Type error-1為91.66%,Type error-2為86.66%,Type error-3為84.61%,Type error-4為81.81%,Type-good為94.73%,平均正確辨識率為88.57%。
This study consists of two main topics: (a) Topic 1: The research on Principal Component Analysis (PCA), and (b) Topic 2: Using PCA for analyzing DC motors current signal. The principal component analysis is utilized for data reduction or dimension reduction. The process of PCA is summarized as follows: (1) To find the correlation between these variables by analyzing the correlation between variables and ; (2) According to the analyzed results, one can reduce the number of variables or generate another group which the number of new variables is smaller than the number of original variables. In other words, the PCA firstly finds dependencies of these original variables, and then retains the variables that have a greater impact and removes the less-affected variables. Therefore, PCA not only achieves the purpose of reducing the number of variables, but also retains most of the information. The second topic is to apply the PCA method to analyze the current signals of DC motors. This topic is divided into two parts: (a) Defining test points for motor current signals; (b) Finding and storing test points for motor current signals; (c) Selecting principal components of various motor quality classes using the PCA method; (d) Determing motor quality types. This study identifies five types of motor quality, including Type-good and Type error-1 to Type error-4. After lots of experiments, the results show that the total classification accuracies (TCAs) are 91.66%,86.66%,84.61%,81.81%,and 94.73% for Type error-1, Type error-2, Type error-3, Type error-4, and Type-good, respectively. The average TCA is 88.57%.
目  錄
摘要-----------------------------------------------------------------ii
Abstract-------------------------------------------------------------iii
致謝-----------------------------------------------------------------iv
目錄------------------------------------------------------------------v
表目錄---------------------------------------------------------------vi
圖目錄--------------------------------------------------------------vii
第一章 前言-----------------------------------------------------------1
第二章 主成分分析法的回顧---------------------------------------------3
2.1 簡介--------------------------------------------------------------3
2.2基本理論----------------------------------------------------------4
2.3主成分分析法的計算步驟--------------------------------------------5
第三章 主成分分析法的應用--------------------------------------------10
3.1 訊號分析器的系統架構---------------------------------------------10
3.2主要成分的選取 (Principal Component Selection) -------------------11
3.2.1 馬達電流訊號之測試點的定義-------------------------------------11
3.2.2擷取與尋找馬達電流訊號的測試點----------------------------------13
3.2.3各種馬達品質類別之主成分的選取---------------------------------18第四章 馬達品質類別的辨識--------------------------------------------19
4.1故障馬達品質類別Type error-1的辨識-------------------------------19
4.2故障馬達品質類別Type error-2的辨識-------------------------------22
4.3故障馬達品質類別Type error-3的辨識-------------------------------26
4.4故障馬達品質類別Type error-4的辨識-------------------------------29
第五章 實驗與性能評估------------------------------------------------32
5.1實驗一:評估辨識單一週期訊號的能力--------------------------------32
5.1.1故障馬達品質類別Type error-1------------------------------------33
5.1.2故障馬達品質類別Type error-2------------------------------------34
5.1.3故障馬達品質類別Type error-3------------------------------------35
5.1.4故障馬達品質類別Type error-4------------------------------------36
5.1.5良好馬達品質類別Type-good--------------------------------------37
5.2實驗二:評估整體的正確辨識率--------------------------------------39第六章 結論----------------------------------------------------------41參考文獻-------------------------------------------------------------42
簡歷-----------------------------------------------------------------43
表目錄
表3-1:馬達電流訊號中10個測試點的定義---------------------------------13
表3.1:陣列Table-all中的存放格式------------------------------------17
表3.2:演算法Procedure-PCA所決定的主要成分--------------------------18
表4.1:Type error-1的門檻值------------------------------------------21
表4.2:Type error-2的門檻值------------------------------------------24
表4.3:Type error-3的門檻值------------------------------------------27
表4.4:Type error-4的門檻值------------------------------------------30
表5.1:待測試的馬達個數 ---------------------------------------------32
表5.1:Type error-1的門檻值與本實驗的量測值--------------------------34
表5.2:Type error-2的門檻值與本實驗的量測值--------------------------35
表5.3:Type error-3的門檻值與本實驗的量測值--------------------------36
表5.4:Type error-4的門檻值與本實驗的量測值--------------------------37
表5.2:實驗二的辨識結果----------------------------------------------40




圖目錄
圖2.1:演算法Procedure-PCA的流程圖[13] -----------------------------9
圖3.1:本篇論文所提之馬達電流訊號分析器的系統架構圖------------------11
圖3.2:馬達電流訊號中十個測試點point 1至point 10的定義[13,14]------12
圖3.3:Procedure-Fetch演算法的流程圖---------------------------------14
圖3.4:演算法Procedure-Pole的流程圖----------------------------------15
圖3.5:演算法Procedure-up-down的流程圖------------------------------16
圖3.6:演算法Procedure-All的流程圖----------------------------------17
圖4.1:品質類別Type error-1的馬達電流波形圖-------------------------21
圖4.2:演算法Procedure-Type error-1的流程圖-------------------------22
圖4.3:品質類別Type error-2的馬達電流波形圖-------------------------25
圖4.4:演算法Procedure-Type error-2的流程圖-------------------------25
圖4.5:品質類別Type error-3的馬達電流波形圖-------------------------27
圖4.6:演算法Procedure-Type error-3的流程圖-------------------------28
圖4.7:Type error-4的馬達電流波形圖----------------------------------31
圖4.8:演算法Procedure-Type error-4的流程---------------------------31
圖5.1:品質類別Type error-1的馬達電流波形圖-------------------------33
圖5.2:品質類別Type error-2的馬達電流波形圖-------------------------34
圖5.3:品質類別Type error-3的馬達電流波形圖-------------------------36
圖5.4:Type error-4的馬達電流波形圖----------------------------------37
圖5.5:品質類別Type-good的馬達電流波形圖----------------------------38
圖5.6:品質類別Type-good的辨識過程流程圖----------------------------39
參考文獻

[1] I. T. Jolliffe, Principal Component Analysis, New York: Springer-Verlag, 1986.
[2] A. J. O''Toole, and H. Abdi, “Face Recognition Models,” International Encyclopedia of the Social & Behavioral Sciences, pp. 5223-5226, 2001.
[3] F. Castells, P. Laguna, L. Sornmo, A. Bollmann, and J. M. Roig, “Principal component analysis in ECG signal processing,” EURASIP Journal on Advances in Signal Processing, Vol. 2007, pp. 1-21, 2007.
[4] F. Wang, “Factor Analysis and Principal-Components Analysis,” International Encyclopedia of Human Geography, pp. 1-7, 2009
[5] I. T. Jolliffe, Principal Component Analysis: Encyclopedia of Statistics in Behavioral Science. Wiley- Inter Science, 2005
[6] C. Ding, and X. He, “K-means Clustering via Principal Component Analysis,” Proceedings of the twenty-first international conference on machine learning, pp. 29-37, 2004.
[7] W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation by dynamic principal component analysis,” Chemometrics and Intelligent Laboratory Systems, Vol. 30, No. 1, pp. 179–196, 1995.
[8] Y. C. Yeh, “Fuzzy logic method for motor quality types on current waveforms”, Measurement, vol. 46, pp. 1682-1691, 2013
[9] Y. C. Yeh, Y. Chu, C. W. Chiou, and H. J. Lin, “A fuzzy c-means method for determining motor’s quality types based on current waveforms”, Lecture Notes in Electrical Engineering, vol. 234, pp. 77-83, 2013.
[10] S. M. Rasheed, D. W. Stashuk, and M. Kamel, “An interactive environment for motor unit potential classification using certainty-based classifiers”, Simulation Modelling Practice and Theory, vol. 16, pp. 1293-1311, 2008
[11] H. X. Chen, P. S. K. Chua, and G. H. Lim, “Adaptive wavelet transform for vibration signal modeling and application in fault diagnosis of water hydraulic motor,” Mechanical Systems and Signal Processing, vol. 20, pp. 2022-2045, 2006
[12] A. Kapun, M. Curkovic, A. Hace, and K. Jezernik, “Identifying dynamic model parameters of a BLDC motor,” Simulation Modelling Practice and Theory, vol. 16, pp. 1254-1265, 2008.
[13] 周崇暐, 工廠自動化的品質控制員:以馬達製造工廠為例, 健行科技大學電子工程研究所碩士論文, 2016.
[14]楚萃瑤, 在馬達的電流波形上使用Fisher’s線性鑑別分析法辨識馬達的品質類別, 健行科技大學電子工程研究所碩士論文, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top