跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊國玄
研究生(外文):Yang, Guo-Syuan
論文名稱:氧化法製備二氧化鈦膜及光催化染料之研究
論文名稱(外文):Photocatalytic Degradation of Dye Solution with Titanium Dioxide Films Prepared by Oxidation Method
指導教授:王文裕王文裕引用關係
指導教授(外文):Wang, Wen-Yu
口試委員:姚品全王順成陳偉聖
口試委員(外文):Yao, Pin-ChuanWang, Shun-ChengChen, Wei-Sheng
口試日期:2018-01-16
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:125
中文關鍵詞:微弧氧化鹼處理熱處理
外文關鍵詞:Micro-arc oxidationAlkali treatmentHeat treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為微弧氧化、鹼處理、熱處理三個製備階段參數進行氧化膜製備,分別研究三個階段不同參數對亞甲基藍光催化效果差異。批次實驗利用波長365 nm黑燈管進行染料溶液批次光催化,進行染料溶液循環流動光催化實驗利用UV-LED燈,對染料溶液去除率進行分析比較。第一階段為微弧氧化製備參數,在陽極鈦金屬施加電壓,鈦金屬表面發生電崩潰、融化、氣化、化學反應、擴散、凝固和相變化等物理化學過程,鈦金屬表面形成二氧化鈦膜;第二階段製備參數為鹼處理將氧化膜改質;第三階段製備參數為高溫煅燒。
染料溶液的批次實驗研究結果顯示,體積20 mL、濃度10 mg/L的亞甲基藍染料溶液,以2.5×5 cm2二氧化鈦膜,在2.64 mW/cm2光輻射強度下照光1小時。二氧化鈦膜未經鹼處理僅將染料降解20.5%;二氧化鈦膜經24小時浸漬40°C的1.25 M之NaOH鹼處理後,可將染料降解34.3%;經3小時400°C熱處理後可將染料降解34.8%,可證實經鹼處理之二氧化鈦膜對染料降解率有大幅度提升。
染料溶液的循環流動實驗則為一連續循環之流動染料溶液系統,包括蠕動泵浦、UV/Vis流動偵測槽及連接管路,流速1.6 mL/min,照射面積為8.04 cm2圓形區域,體積6 mL、濃度為10 mg/L的亞甲基藍染料溶液,以波長365 nm且光輻射強度20 mW/cm2的UV-LED照光2小時,每隔15分鐘檢測一次亞甲基藍濃度降解率。最大降解率為經1.25 M之鹼處理二氧化鈦膜,0.5 V外加偏壓光催化,可降解37.3%亞甲基藍濃度,表示光電催化對於降解染料有提升效果,0 V外加偏壓光催化與單純光催化反應相比,降解濃度提升了2.9%。二氧化鈦膜之XRD分析結果可看出光催化效果較佳之二氧化鈦膜的銳鈦礦相(101)之衍射(繞射)強度較高;光催化效果較差之二氧化鈦膜金紅石相及鈦的衍射強度較高。二氧化鈦膜之SEM分析結果可看出較佳光催化效果的二氧化鈦膜,膜表面孔洞較密集且氧化膜偏向叢雲狀。
The experiment is divided into three stages for study the in photocatalytic effects with different oxide films. Batch experiment uses Wood's lamp of 365 nm. Use UV-LED to compare the photocatalytic and the photo-electrocatalytic effects on the dye solution removal rate used for the recycling experiment.
First, Micro-arc Oxidation must run with a high potential which breakdown the surface layer of oxide in anodes. Dielectric breakdown in the process causes, melting, gasification, chemical reactions, diffusion, solidification and phase transformation and leaves an oxide layer on metal surface. Second, alkali oxide film modification can changes phase in titanium metal surface. Third, high temperature calcination, the best photocatalytic properties of the oxide film. Batch experiment results show with light intensity of 2.64 mW/cm2, volume of 20 mL with 10 mg/L of methylene blue, TiO2 film area 2.5×5 cm2 for 1 hour, only 20.5% degradation is observed without alkali treatment. For 24 hr immersion in 40°C of 1.25 M lye, the dye is degraded 34.3%; After 3 hr and 400°C heat treatment the dye degradation was 34.8%.
The cycling experiment is performed at light intensity of more than 20 mW/cm2 and continuous circulation consists of peristaltic pump, UV/Vis flow detection cell and connecting line with flow rate of 1.6 mL/min. Irradiation is on a circular area 8.04 cm2. Firsting out of prepared 10 mg/L methylene blue, take the volume of 6 mL and pour into the beaker UV/Vis absorbance with continuous circulation device detection groove equiped. During 2 hr of UV-LED illumination samples are target every 15 minutes for degradation efficiency different. The maximum degradation efficiency for a biasing voltage of 0.5 V, with a 1.25 M alkaline treatment on the titanium plate is 37.3%, indicating the photo-electrocatalytic degradation of dyes is enhanced.
XRD detection for the angle of 20°~75° to detect the diffraction intensity for each of increment of 0.02°. The results can be seen as long as the photocatalytic effect of the titanium plate A(101) anatase phase diffraction intensity is higher. Rutile phase with poor catalytic performance and higher diffraction intensity of titanium. SEM detection of the sample plane and the side to shoot at 2500 times magnification, it can be seen that the oxide film with better photocatalytic effect has more dense pores and thicker oxide film tending to cluster clouds.
總目錄
摘要 I
Abstract III
致謝 IV
總目錄 V
表目錄 VIII
圖目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 二氧化鈦結構特性 3
2.2 二氧化鈦光催化原理與應用 6
2.2.1 二氧化鈦光催化原理 6
2.2.2 紫外光簡介 8
2.2.3 二氧化鈦光催化應用 8
2.3 二氧化鈦膜製備技術 10
2.3.1 化學氣相沉積 11
2.3.2 反應性濺鍍 12
2.3.3 模板合成 13
2.3.4 溶膠-凝膠 14
2.3.5 水熱反應 16
2.3.6 化學液相沉積 18
2.3.7 陽極氧化 18
2.3.8 微弧氧化 20
2.3.9 化學處理 21
2.4 微弧氧化技術特點及發展概況 22
2.4.1 微弧氧化技術特點及應用 22
2.4.2 微弧氧化技術發展及現狀 25
2.5 微弧氧化原理 28
2.6 鈦金屬微弧氧化技術 33
2.6.1 微弧氧化製備二氧化鈦膜技術 36
2.6.2 微弧氧化電化學反應 37
第三章 材料與方法 38
3.1 實驗架構 38
3.2 實驗儀器設備 41
3.3 實驗藥品 42
3.4 實驗材料 43
3.5 實驗步驟 44
3.5.1 鈦板前處理 44
3.5.2 化學鹼處理 47
3.5.3 熱處理 47
3.5.4 光催化反應系統 48
3.6 微觀形貌觀察與晶體結構分析 49
3.6.1 掃描式電子顯微鏡 49
3.6.2 X光繞射分析 50
第四章 結果與討論 52
4.1 光催化空白實驗 52
4.2 二氧化鈦膜對染料溶液之批次光催化反應率 54
4.2.1 脈衝時間效應 55
4.2.2 脈衝電壓效應 58
4.2.3 脈衝頻率效應 64
4.2.4 脈衝佔空比效應 66
4.2.5 磷酸二氫鈉濃度效應 72
4.2.6 乙二胺四乙酸濃度效應 77
4.2.7 鹼處理濃度與時間效應 79
4.2.8 鹼處理溫度效應 84
4.2.9 熱處理溫度效應 89
4.2.10 熱處理時間效應 94
4.3 二氧化鈦膜對染料溶液之循環流動光催化與光電催化反應率 98
4.3.1 不同特性二氧化鈦膜之光催化 99
4.3.2 不同光波長與光強度紫外光源之光催化反應率 102
4.3.3 亞甲基藍在強紫外光幅射強度下之濃度變化 104
4.3.4 不同外加偏壓對染料光電催化效應 106
4.3.5 不同特性二氧化鈦膜對染料光電催化效應 109
第五章 結論 111
參考文獻 112
表目錄
表2.1 二氧化鈦晶型物化特性比較 4
表2.2 紫外光和可見光波長範圍 8
表2.3 二氧化鈦光催化可用之用途種類 9
表2.4 微弧氧化之用途種類 27
表2.5 電極表面鄰近電解液放電 31
表2.6 電極表面介電層放電 32
表3.1 實驗儀器設備 41
表3.2 實驗藥品 42
表3.3 電極材料 43
表3.4 實驗藥劑 43
表3.5 微弧氧化共同參數 44
表4.1 亞甲基藍背景值試驗組別 52
表4.3 微弧氧化鈦板製備參數 55
表4.4 脈衝電壓對光催化效果影響 58
表4.5 脈衝頻率對光催化效果影響 64
表4.6 脈衝佔空比對光催化效果影響 66
表4.7 磷酸二氫鈉濃度變化對光催化效果影響 72
表4.8 乙二胺四乙酸濃度變化對光催化效果影響 77
表4.9 微弧氧化鈦板製備參數 79
表4.10 鹼處理濃度與時間變化對光催化效果影響 79
表4.11 二氧化鈦鹼處理溫度變化參數 84
表4.12 二氧化鈦熱處理溫度變化參數 89
表4.13 二氧化鈦熱處理時間變化參數 94
圖目錄
圖2.1 二氧化鈦晶體結構(a)金紅石(b)板鈦礦(c)銳鈦礦 5
圖2.2 光催化反應 7
圖2.3 直流磁控濺鍍法製備羽毛狀結構二氧化鈦之SEM圖 12
圖2.4 模板製造法製備二氧化鈦奈米線所需模板 13
圖2.5 溶膠-凝膠法製備多孔結構二氧化鈦SEM圖 15
圖2.6 溶膠-凝膠法製備二氧化鈦TEM圖 15
圖2.7 水熱法製備二氧化鈦奈米線之SEM圖 17
圖2.8 水熱法製備二氧化鈦奈米線之SEM圖 17
圖2.9 陽極氧化法製備二氧化鈦奈米管陣列之SEM圖 19
圖2.10 陽極氧化法製備二氧化鈦奈米管陣列之SEM圖 19
圖2.11 微弧氧化法製備多孔結構二氧化鈦之SEM圖 20
圖2.12 化學鹼處理法製備多孔結構二氧化鈦之SEM圖 21
圖2.13 處理液中的電解過程 28
圖2.14 材料在電解質溶液中電流-電壓曲線 30
表2.7 鈦金屬基本性質介紹 33
圖3.1 實驗架構圖 38
圖3.2 微弧氧化設備組裝圖 45
圖3.3 微弧氧化設備 46
圖4.1 脈衝時間變化之二氧化鈦膜對亞甲基藍光催化效應 56
圖4.2 脈衝電壓對亞甲基藍濃度影響 59
圖4.3 脈衝電壓變化製備之二氧化鈦膜之SEM圖 61
圖4.4 微弧氧化電壓對二氧化鈦膜之晶相之影響 62
圖4.5 脈衝頻率對亞甲基藍濃度影響 65
圖4.6 脈衝佔空比對亞甲基藍濃度影響 67
圖4.7 佔空比示意圖 68
圖4.8 佔空比對氧化膜影響之SEM圖 69
圖4.9 佔空比對二氧化鈦膜之晶相之影響 71
圖4.10 磷酸二氫鈉濃度變化對光催化效果影響 73
圖4.11 磷酸二氫鈉濃度對氧化膜製備影響之SEM圖 74
圖4.12 磷酸二氫鈉濃度對二氧化鈦膜之晶相之影響 76
圖4.13 乙二胺四乙酸濃度對光催化效果影響 78
圖4.14 鹼處理濃度與時間變化對光催化效果影響 80
圖4.15 鹼處理濃度對氧化膜影響之SEM圖 81
圖4.17 鹼處理溫度變化對光催化效果影響 84
圖4.18 鹼處理溫度對氧化膜製備影響之SEM圖 85
圖4.19 鹼處理反應機制示意圖 87
圖4.20 鹼處理溫度對二氧化鈦膜之晶相之影響 88
圖4.21 熱處理溫度變化對光催化效果影響 89
圖4.22 不同熱處理溫度對氧化膜影響之SEM圖 90
圖4.23 熱處理溫度對二氧化鈦膜之晶相之影響 92
圖4.24 二氧化鈦相變化 93
圖4.25 熱處理時間變化對光催化效果影響 94
圖4.26 不同熱處理時間對氧化膜影響之SEM圖 95
圖4.27 熱處理時間對二氧化鈦膜之晶相之影響 97
圖4.28 光催化亞甲基藍濃度與時間降解變化關係 100
圖4.29 光催化亞甲基藍反應速率一階圖 100
圖4.30 鹼處理濃度變化反應速率常數 101
圖4.31 不同型號燈泡對染料降解效率 102
圖4.32 不同型號燈泡反應速率常數 103
圖4.33 染料背景濃度測試 104
圖4.34 燈泡對染料濃度反應速率常數 105
圖4.35 外加偏壓對染料降解之影響 106
圖4.36 外加偏壓降解染料之反應速率常數 107
圖4.37 光與外加偏壓下電子-電洞在二氧化鈦膜下行徑 107
圖4.38 外加0.5 V偏壓對不同二氧化鈦膜染料降解之影響 109
圖4.39 同外加偏壓對不同鹼處理濃度二氧化鈦膜反應速率常數 110
參考文獻
1.土卞田博史,「光觸媒圖解」,城邦文化事業股份有限公司,臺北(2003)。
2.王燕華、王佳、張際標,「鎂合金微弧氧化過程中不同電壓下獲得膜層的性能研究」,中國腐蝕與防護學報,第二十五卷,第五期,第267-270頁(2005)。
3.王自存、梁穎芝、梁淑惠、鄧國同、黃錦傑,「短波紫外線(UV-C)照射處理技術在園產品保鮮之應用」,臺北國立臺灣大學園藝系,(2009)。
4.王曉嵐、寧成雲、譚幗馨、於鵬、鍾梅玲、李英,「熱處理溫度對鈦表面微奈米分級多孔膜結構特徵影響規律」,華南理工大學材料科學與工程學院,第四十四卷,第六期,(2015)。
5.田照正,「石墨稀複合二氧化鈦光電催化降解染料之研究」,碩士論文,朝陽科技大學環境工程與管理系,臺灣,臺中,(2014)。
6.朱瑞富、王志刚、肖桂勇,「電極電壓對纯钛表面微弧氧化陶瓷膜结構及特性的影響」,矽酸鹽學報,第三十六卷,第五期,第631-635頁(2008)。
7.呂宗昕、吳偉宏,「奈米科技與二氧化鈦光觸媒」,臺灣大學化學工程所,科學發展,第三百七十六期,第73-77頁(2004)。
8.李幸芳,「微弧生長銳鈦礦氧化鈦薄膜於鈦金屬板及其敏化太陽電池效能之研究」,碩士論文,逢甲大學材料科學研究所,(2007)。
9.李九龍,「以微弧氧化提升鈦合金表面陶瓷膜之耐蝕性」,龍華科技大學學報,第二十七期,(2009)。
10.李宛樺、郭柏成、吳政峰、袁中新、洪崇軒「光電催化效應對光觸媒玻纖電子濾網分解丙酮之影響」,第七屆環境保護與奈米科技學術研討會,臺北,(2010)。
11.吳淑媛,「結合微弧氧化與鹼處理發展具有奈米形貌之二氧化鈦於鈦金屬及其染料敏化太陽電池之應用」,碩士論文,逢甲大學材料科學研究所,(2009)。
12.林麗娟,「X光繞射原理及其應用」,工業材料,第八十六期,第100-109頁(1994)。
13.林錕松、王睿毅,「表面改質二氧化鈦奈米管應用於環境中有機及硝酸鹽污染物去除技術之開發」,行政院環境保護署期末報告(定稿本),臺北(2009)。
14.胡宗純、謝發勤、吳向清,「不同控制方式下佔空比對鈦合金微弧氧化膜的影響」,電鍍與環保,第二十六卷,第五期,第23-25頁(2006)。
15.施周,「半導體奈米粒子的光催化活性」,環境奈米技術,第166頁(2006)。
16.洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第二十一卷,第一期,第12-22頁(2013)。
17.徐明義,「模板式生長二氧化鈦奈米管之染料敏化太陽能電池研究」,碩士論文,逢甲大學材料科學研究所,(2006)。
18.席曉光,「表面技術」,微弧氧化技術述評,第三十六卷,第四期,第66-68頁(2007)。
19.唐元廣,「TC4鈦合金微弧氧化膜的製備表徵陽極微弧放電機制研究」,博士學位論文,吉林大學物理學院,(2009)。
20.唐元廣、吳漢華、常鴻、陳根餘、桑勇、白亦真,「陰極電壓脈衝佔空比對鈦合金微弧氧化膜特性的影響」,物理學報,第七期,(2009)。
21.張智信,「陽極處理法製備二氧化鈦奈米管狀結構並應用於染料敏化太陽能電池之研究」,碩士論文,臺北科技大學材料科學與工程研究所,(2008)。
22.陳栢睿,「陽極氧化法製備二氧化鈦奈米管陣列膜及光催化染料之研究」,碩士論文,朝陽科技大學環境工程與管理系,臺灣,臺中,(2009)。
23.莊雍帆,「煅燒溫度對二氧化鈦光電催化降解染料之影響」,碩士論文,朝陽科技大學環境工程與管理系,臺灣,臺中,(2010)。
24.張漢昌、高肇郎、郭貹隆、游宛菁、賴世裕,「煅燒溫度對陽極氧化製備多孔性二氧化鈦電極之影響」,技術學刊,第二十八卷第四期,第211-216頁(2013)。
25.陳秀瑛,「熱氧化法製作垂直二氧化鈦奈米柱及其光伏效能研究」,碩士論文,交通大學材料科學與工程學系,(1999)。
26.陳輝樺、王夕堯,「光是什麼」,國立自然科學博物館,(2002)。
27.陳震閎,「透明導電玻璃生長二氧化鈦奈米管陣列應用於敏化太陽電池」,碩士論文,逢甲大學材料科學研究所,2008。
28.劉如熹、紀喨勝,「紫外光發光二極體用螢光粉介紹」,臺北全華科技,(2003)。
29.Albella, J. M., Montero, I. and Martinezduart, J. M., “A theory of avalanche breakdown during anodic oxidation,” J.Electrochim.Acta, Vol. 32, No. 2, pp.255-258(1987).
30.Apelfeld, A. V., and Bespalova, O. V., “Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys,” Nuclear Instruments and Methods in Physics Research B, Vol. 161, No. 553(2000).
31.Ahonen, M., Ala-Aho, R., Baker, A.H., George S.J., Grenman R., Grenman R., Saarialho-Kere U.,and Kahari, V.M., “Antitumor activity and bystander effect of adenovirally delivered tiiue inhibitor of metalloproteinases-3. Mol Ther. 5,” pp.705-715(2002).
32.Apelfeld, A. V., Bespalova, O. V. and Borisov, A. M., “Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys. Nuclear Instruments & Methods in Physics Research Section BBeam Interactions with Materials and Atoms,” Vol. 161, pp.553-557(2000).
33.Bragg, W. H., and Bragg, W. L., “The reflection of XRDs by crystals Proc Roy Soc,88(A605),” pp.428-438(1913).
34.Burgess, D.R., Hotsenpiller P.A.M., Anderson T.J., and Hohman J.L., “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2,” Journal of Crystal Growth, Vol. 166, pp.763-768(1996).
35.Byun D., Jin Y., Kim B., Lee J. K. and Park D., “Photocatalytic TiO2 deposition by chemical vapor deposition,” Journal of Hazardous Materials, Vol. 73, pp.199-206(2000).
36.Bando, Y., Zhang, M., and Wada, K., “Sol-gel template preparation of TiO2 nanotubes and nanorods,” Journal of Materials Science Letters, Vol. 20, pp.167-170(2001).
37.Bayati, M. R., Golestani-Fard, F., Moshfegh, A. Z., “How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters,” Applied Surface Science, Vol. 256, pp.4253-4259(2010).
38.Chigrinova, N. M., Chigrinov, V. E., Kukharev, A. A., “The heat protection of highly forced diesel pistons by anodic microarc oxide coating.” Protection of Metals, Vol. 36, No. 3, pp.269-274(2000).
39.Chen, Z., Liu, C., Chen, F., Cao, Y., Fan, J. and Zhou, J., “Preparation of porous TiO2 using eggshell membrane as template and its photocatalytic activity,” Procedia Engineering, Vol. 27, pp.512-518(2012).
40.Cheng, Y., Zhang, M., Yao, G., Yang, L., Tao, J., Gong, Z., He, G., Sun, Z., “Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method,” Journal of Alloys and Compounds, Vol. 662, pp.179-184(2016).
41.Dittrich, K. H., Leoard, L. G., “Microarc oxidation of aluminum alloy components,” J.Crys.Res.Technol.,Vol. 20, No. 1, pp.93-96(1985).
42.Dearnley, P. A., Gummersbach, J., Weiss, H. et al., “The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure,” Wear, Vol. 229, pp.127-134(1999).
43.Dumitriu D., Bally A.R., Ballif C., Hones P., Schmid P.E., Sanjinés R., Lévy F. and Pârvulescu V.I., “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Applied Catalysis B: Environmental, Vol. 25, pp.83-92(2000).
44.Dorozhkin, S. V., “7-Surface modification of magnesium and its biodegradable alloys by calcium orthophosphate coatings to improve corrosion resistance and biocompatibility,” Surface Modification of Magnesium and its Alloys for Biomedical Applications, Vol. 2, pp.151-191(2015).
45.Du, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., “High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition,” Journal of Alloys and Compounds Vol. 687, pp.893-897(2016).
46.Department of Chemistry, Rutgers University, 315 Penn St., “Camden, NJ 08102, USA Renewable and Sustainable Energy Reviews, Vol. 72,” pp.981-1000(2017).
47.Fujishima A. and Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature,” Vol. 238, pp.37-38(1972).
48.Fazel, H.R. Salimijazi, M.A. Golozar, M.R. Garsivaz, jazi, “A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti-6Al-4V alloy treated bymicro-arc oxidation process,” Applied Surface Science, Vol. 324 pp.751-756(2015).
49.Guntershulze, A., Betz, H., “Elektroliticheskie Kondensatory (electrolytic capacitors), Obornizidat,” Moscow, pp.238(1938).
50.Gómez, M., Magnusson, E., Olsson, E., Hagfeldt, A., Lindquist S. E., and Granqvist, C.G., “Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness,” Solar Energy Materials and Solar Cells, Vol. 62 pp.269-263(2000).
51.Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al., “Composition and adhesion of protective coatings on aluminum,” Surface and Coatings Technology, Vol. 145, No. 13, pp.146-151,(2001).
52.Guangliang Y, L. Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsum, “Journal of Alloys and Compounds, ” Vol. 345, pp.196-200,(2002).
53.Galusha, J. W. Tsung, C. K., Stucky G. D. and Bartl M. H., “Optimizing sol-gel infiltration and processing methods for the fabrication of high-quality planar titania inverse opals”, Chemistry of Materials, Vol. 20 pp.4925-4930(2008).
54.Hagfeldt, A., and Grätzel, M., “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, Vol. 95, pp.49-68(1995).
55.Ha, H. Y. and Anderson, M. A., “Photocatalytic degration of formic acidvia metal-supported titania,” J. Environ. Engin., Vol. 122, pp.217-221(1996).
56.Hoess, A., Teuscher, N., Thormann, A., Aurich, H. and Heilmann, A., “Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes,” Acta Biomaterialia, Vol. 3, pp.43-55(2007).
57.Hailun, Z., Jie, Z., Guoying, S., Yaogang, Li., Qinghong Z., Hongzhi, W., “Directly grown anatase TiO2 films via liquid phase deposition as the photoanodes for dye-sensitized solar cells,” Electrochimica Acta, Vol. 179, pp.197-205(2015).
58.Hyoung-il K., Doohun, K., Wooyul, K., Yoon-Cheol H., Seong-Ju S., Sujeong K. and Wonyong C., “Anodic TiO2 nanotube layer directly formed on the inner surface of Tipipe for a tubular photocatalytic reactor,” Applied Catalysis A, General, Vol. 521, pp.174–181(2016).
59.Ikonopisov, S., “Theory of electrical breakdown during formation of barrier anodic films,” J.Electrochim.Acta, Vol. 22, No. 10, pp.1077-1082,(1977).
60.Imai H., Matsuta, M., Shimizu, K., Hirashima, H. and Negishi, N., “Preparation of TiO2 fibers with well-organized structures,” Journal of Materials Chemistry, Vol. 10, pp.2005-2006(2000).
61.Krysmann, W., Kurze, P., Dittrich, H. G., “Process characteristics and parameters of oxidation by spark discharge (ANOF),” Cryst Res Technol, Vol. 19, No. 7,(1984).
62.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., “Formation of titanium oxide nanotube,” Longmuir, Vol. 14 pp.3160-3163(1998).
63.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., “Titania nanotubes prepared by chemical processing,” Advanced Materials, Vol. 11 pp.1307-1311(1999).
64.Ku, Y., Lee, Y. C. and Wang, W. Y., “Photocatalytic Decomposition of 2-Chlorophenol in Aqueous Solution by UV/TiO2 Process with Applied External Bias Voltage,” Journal of Hazardous Materials, B138 , pp.350-356(2006).
65.Karbowniczek, J., Muhaffel, F., Cempura, G., Cimenoglu, H., Czyrska-Filemonowicz A., “Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy,” Surface and Coatings Technology, Vol. 321, pp.97-107(2017).
66.Levin, E. M., McMurdie, H.F., Phase Diagrams for Ceramists, Vol. 11,(1975).
67.Linsebigler A. L., Lu G., Yates Jr. J. T. “Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem,” Rev. 95, pp.735-758(1995).
68.Liu B. and Aydil S., “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conduction substrates for dye-sensitized solar cell,” Journal of the American Society, Vol. 131, pp.3985-3990(2009).
69.Lu, G.H., Chen, H., Ga, W. C., Li, L., Niu, E. W., Zhang X. H., and Yang, S. Z., “Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology,” Journal of Materials Processing Technology,Vol. 208, pp.9-13(2008).
70.Linkang, Z., Jianjun Lu., “Fabrication and application of mesoporous TiO2 film coated on Al wire by sol-gel method with EISA,” Vol. 402, pp.369–371,(2017).
71.Markov G A, Markova G V., “Method for forming anodes of electrolytic capacitors,” Ussr patent, pp.526-961(1976).
72.Markov, G. A., Mironova, M. K., Potapova, O. G., “Izvetiya Akademiij Nauk. Neogranicheskie Materialy,” Vol. 19, No. 7, pp.110(1983).
73.Malyshev, V. N, Malysheva, N. V., “A Method for Forming WearResistant Coatings,” RF Patent, No. 202, pp.68-90(1988).
74.Mo S.-D. and Ching W. Y., “Electronic and optical properties of three phases of titanium dioxide Rutile, anatase, and brookite," Physical review B, vol. 51, pp.13023-13032(1995).
75.Mor, G.K., Varghese, O.K., Paulose, M., Shankar K. and Grimes, C.A., “A review on highly ordered, vertically oriented TiO2 nanotube arrays:fabrication, material properties and solar energy applications,” Solar Energy Materials and Solar Cells, Vol. 90, pp.2011-2075(2006).
76.Nie, X., Meletis, E. I., Jlang, J. C., et al., “Abrasive wear corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis,” Surface and Coatings Technology, Vol. 149, No. 23, pp.245-251,(2002).
77.Naofumi Ohtsu, Kento Yokoi, “Surface structure and photocatalytic performance of an anodic oxide layer fabricated on titanium in a nitrate/ethylene glycol electrolyte with different treatment durations,” Surface & Coatings Technology, Vol. 294, pp.109-114(2016).
78.Rudnev, V. S., Yarovaya, T. P., Boguta, D. L., et al., “Anodic spark deposition of P, Me(II) or Me(III) containing coatings on aluminium and titanium alloys in electrolytes with polyphosphate complexes,” Journal of Electroanalytical Chemistry, Vol. 497, No. 12, pp.150-158,(2001).
79.Rudnev, V. S., and Vasileva, M. S.“On the Surface Structure of Coatings Formed by Anodic Spark Method," Protection of Metals, Vol. 40, No. 4, pp.352-357(2004).
80.Sawunyama, P., Yasumori A., and Okada, K., “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin,” Vol. 33 pp.795-801(1998).
81.Song, W., Xiaohong, W., Wei Q., and Zhaohua, J., “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell,” Electrochimica Acta, Vol. 53, pp.1883-1889(2007).
82.Sawsen, N., Nadia, S., Samira, S., Mohammed, F., Mogtaba M., Nadia, A. L., Nouar, T., “Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates," Applied Surface Science, Vol. 395, pp.172–179(2017).
83.Twite, R. L., Bierwagen, P. G., “Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys," Progress in organic coatings, Vol. 33, No. 2, pp.91-100,(1998).
84.Van, T. B, Brown, S. D. and Wirtz, P. G., “Mechanism of anodic spark deposition," American Ceramic Society Bulletin, Vol. 56 No. 6, pp.563-566,(1977).
85.Vinodgopal K. and Kamat P.V., “Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Film,” Environment Science and Technology, Vol. 29, pp.841-845(1995).
86.Vinu, R., and Madras, G., “Environmental remediation by photocatalysis," Journal of the Indian Institute of Science, Vol. 90, No. 2, pp.189-230(2010).
87.Wirtz, G. P., Brown, S. D., Kriven, W. M., “Ceramic Coatings By Anodic Spark Deposition,” Materials and Manufacturing Processes, Vol. 6, No. 1, pp.87-115,(1991).
88.Wei D., Zhou Y., Jia D. and Wang Y., “Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications,” Acta Biomaterialia, Vol. 254, pp.1775-1782(2008).
89.Wu, S. Y., Lo, W. C., Chen K. C., and He, J. L., “Study on the preparation of nano-flaky anatase titania films and photovoltaic application," Renewable Energy International Conference and Exhibition, Vol. 10, pp.180-183(2009).
90.Xin S G, Jiang Z H, Wang F P, et al., “Effect of current density on Al alloy microplasma oxidation," Journal of Materials Science & Technology, Vol. 17, No. 6, pp.657-660(2001).
91.Xue W, Wang C , Chen R , Deng Z.“Structure and properties characterization of coatings produced on Ti-6Al-4V alloy by micro-arc oxidation in aluminum,”. Mater Lett, 52, pp.435-441(2002).
92.X. Liu, P.K. Chu and C. Ding, “Surface modification of titanium, titanium alloys and related materials for biomedical applications,” Materials Science and Engineering R, 47 49-121(2004).
93.Xiang, N., Song, R. G., Xiang, B., Li, H., Wang, Z. X. and Wang, C., “A study on photocatalytic activity of micro-arc oxidation TiO2 filmsand Ag+/MAO-TiO2 composite films,” Applied Surface Science, Vol. 347 pp.454-460(2015).
94.Xu, J.L., Xiao, Q.F., Mei, D. D., Tong, Y. X., Zheng, Y. F., Li, L. and Zhong Z. C., “Microstructure, corrosion resistance and formation mechanism of alumina micro-arc oxidation coatings on sintered NdFeB permanent magnets,” Surface and Coatings Technology, Vol. 309 pp.621-627,(2017).
95.Yerokhin, A. L., Lyubimov, V. V., Ryzhov A. N., “Electrochemical and Electro physical Treatment of Materials,” Tula TulGTU,(1993).
96.Yerokhin, A. L., Voevodin, A. A., Lyubimov, V. V., et al., “Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys,” Surface and Coatings Technology, Vol. 110, No. 3, pp.140-146,(1998).
97.Yerokhin, A. L., Nie, X., Leyland, A, et al., “Plasma electrolysis for surface engineering,” Surface and Coatings Technology, Vol. 122, No. 23, pp.73-93,(1999).
98.Yerokhin A L, Nie X, Leyland A., “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surface & Coatings Technology,” Vol 130, No. 23, pp.195-206(2000).
99.Y. Li., T. J. White, and S. H. Lim., “Low-temperature synthesis and microstructural control of titania nano-particles, ” Journal of Solid State Chemistry, Vol. 177, Iss. 4-5, pp.1372-1381(2004).
100.Yu, B.Y., Tsai, A., Tsai, S. P., Wong, K.T., Yang, Y., Chu, C.W. and Shyue, J. J., “Efficient inverted solar cells using TiO2 nanotube arrays,” Nanotechnology, Vol. 19, No. 25,(2008).
101.Yuan, X., Tan, F., Xu, H., Zhang, S., Qu, F., Liu, J., “Effects of different electrolytes for micro-arc oxidation on the bond strength between titanium and porcelain,” journal of prosthodontic research, pp.297-304(2016).
102.Zhang, Y., Fan, W., Du, H. Q., Zhao, Y. W., Song, R. G. and Xiang, N., “Microstructure and photocatalytic property of TiO2 and Fe3+ :TiO2 films produced by micro-arc oxidation,” Vol. 315, pp.196-204(2017).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top