參考文獻
1.土卞田博史,「光觸媒圖解」,城邦文化事業股份有限公司,臺北(2003)。
2.王燕華、王佳、張際標,「鎂合金微弧氧化過程中不同電壓下獲得膜層的性能研究」,中國腐蝕與防護學報,第二十五卷,第五期,第267-270頁(2005)。
3.王自存、梁穎芝、梁淑惠、鄧國同、黃錦傑,「短波紫外線(UV-C)照射處理技術在園產品保鮮之應用」,臺北國立臺灣大學園藝系,(2009)。
4.王曉嵐、寧成雲、譚幗馨、於鵬、鍾梅玲、李英,「熱處理溫度對鈦表面微奈米分級多孔膜結構特徵影響規律」,華南理工大學材料科學與工程學院,第四十四卷,第六期,(2015)。
5.田照正,「石墨稀複合二氧化鈦光電催化降解染料之研究」,碩士論文,朝陽科技大學環境工程與管理系,臺灣,臺中,(2014)。6.朱瑞富、王志刚、肖桂勇,「電極電壓對纯钛表面微弧氧化陶瓷膜结構及特性的影響」,矽酸鹽學報,第三十六卷,第五期,第631-635頁(2008)。
7.呂宗昕、吳偉宏,「奈米科技與二氧化鈦光觸媒」,臺灣大學化學工程所,科學發展,第三百七十六期,第73-77頁(2004)。
8.李幸芳,「微弧生長銳鈦礦氧化鈦薄膜於鈦金屬板及其敏化太陽電池效能之研究」,碩士論文,逢甲大學材料科學研究所,(2007)。9.李九龍,「以微弧氧化提升鈦合金表面陶瓷膜之耐蝕性」,龍華科技大學學報,第二十七期,(2009)。
10.李宛樺、郭柏成、吳政峰、袁中新、洪崇軒「光電催化效應對光觸媒玻纖電子濾網分解丙酮之影響」,第七屆環境保護與奈米科技學術研討會,臺北,(2010)。
11.吳淑媛,「結合微弧氧化與鹼處理發展具有奈米形貌之二氧化鈦於鈦金屬及其染料敏化太陽電池之應用」,碩士論文,逢甲大學材料科學研究所,(2009)。12.林麗娟,「X光繞射原理及其應用」,工業材料,第八十六期,第100-109頁(1994)。13.林錕松、王睿毅,「表面改質二氧化鈦奈米管應用於環境中有機及硝酸鹽污染物去除技術之開發」,行政院環境保護署期末報告(定稿本),臺北(2009)。
14.胡宗純、謝發勤、吳向清,「不同控制方式下佔空比對鈦合金微弧氧化膜的影響」,電鍍與環保,第二十六卷,第五期,第23-25頁(2006)。
15.施周,「半導體奈米粒子的光催化活性」,環境奈米技術,第166頁(2006)。
16.洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第二十一卷,第一期,第12-22頁(2013)。
17.徐明義,「模板式生長二氧化鈦奈米管之染料敏化太陽能電池研究」,碩士論文,逢甲大學材料科學研究所,(2006)。18.席曉光,「表面技術」,微弧氧化技術述評,第三十六卷,第四期,第66-68頁(2007)。
19.唐元廣,「TC4鈦合金微弧氧化膜的製備表徵陽極微弧放電機制研究」,博士學位論文,吉林大學物理學院,(2009)。
20.唐元廣、吳漢華、常鴻、陳根餘、桑勇、白亦真,「陰極電壓脈衝佔空比對鈦合金微弧氧化膜特性的影響」,物理學報,第七期,(2009)。
21.張智信,「陽極處理法製備二氧化鈦奈米管狀結構並應用於染料敏化太陽能電池之研究」,碩士論文,臺北科技大學材料科學與工程研究所,(2008)。22.陳栢睿,「陽極氧化法製備二氧化鈦奈米管陣列膜及光催化染料之研究」,碩士論文,朝陽科技大學環境工程與管理系,臺灣,臺中,(2009)。23.莊雍帆,「煅燒溫度對二氧化鈦光電催化降解染料之影響」,碩士論文,朝陽科技大學環境工程與管理系,臺灣,臺中,(2010)。24.張漢昌、高肇郎、郭貹隆、游宛菁、賴世裕,「煅燒溫度對陽極氧化製備多孔性二氧化鈦電極之影響」,技術學刊,第二十八卷第四期,第211-216頁(2013)。25.陳秀瑛,「熱氧化法製作垂直二氧化鈦奈米柱及其光伏效能研究」,碩士論文,交通大學材料科學與工程學系,(1999)。26.陳輝樺、王夕堯,「光是什麼」,國立自然科學博物館,(2002)。
27.陳震閎,「透明導電玻璃生長二氧化鈦奈米管陣列應用於敏化太陽電池」,碩士論文,逢甲大學材料科學研究所,2008。28.劉如熹、紀喨勝,「紫外光發光二極體用螢光粉介紹」,臺北全華科技,(2003)。
29.Albella, J. M., Montero, I. and Martinezduart, J. M., “A theory of avalanche breakdown during anodic oxidation,” J.Electrochim.Acta, Vol. 32, No. 2, pp.255-258(1987).
30.Apelfeld, A. V., and Bespalova, O. V., “Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys,” Nuclear Instruments and Methods in Physics Research B, Vol. 161, No. 553(2000).
31.Ahonen, M., Ala-Aho, R., Baker, A.H., George S.J., Grenman R., Grenman R., Saarialho-Kere U.,and Kahari, V.M., “Antitumor activity and bystander effect of adenovirally delivered tiiue inhibitor of metalloproteinases-3. Mol Ther. 5,” pp.705-715(2002).
32.Apelfeld, A. V., Bespalova, O. V. and Borisov, A. M., “Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys. Nuclear Instruments & Methods in Physics Research Section BBeam Interactions with Materials and Atoms,” Vol. 161, pp.553-557(2000).
33.Bragg, W. H., and Bragg, W. L., “The reflection of XRDs by crystals Proc Roy Soc,88(A605),” pp.428-438(1913).
34.Burgess, D.R., Hotsenpiller P.A.M., Anderson T.J., and Hohman J.L., “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2,” Journal of Crystal Growth, Vol. 166, pp.763-768(1996).
35.Byun D., Jin Y., Kim B., Lee J. K. and Park D., “Photocatalytic TiO2 deposition by chemical vapor deposition,” Journal of Hazardous Materials, Vol. 73, pp.199-206(2000).
36.Bando, Y., Zhang, M., and Wada, K., “Sol-gel template preparation of TiO2 nanotubes and nanorods,” Journal of Materials Science Letters, Vol. 20, pp.167-170(2001).
37.Bayati, M. R., Golestani-Fard, F., Moshfegh, A. Z., “How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters,” Applied Surface Science, Vol. 256, pp.4253-4259(2010).
38.Chigrinova, N. M., Chigrinov, V. E., Kukharev, A. A., “The heat protection of highly forced diesel pistons by anodic microarc oxide coating.” Protection of Metals, Vol. 36, No. 3, pp.269-274(2000).
39.Chen, Z., Liu, C., Chen, F., Cao, Y., Fan, J. and Zhou, J., “Preparation of porous TiO2 using eggshell membrane as template and its photocatalytic activity,” Procedia Engineering, Vol. 27, pp.512-518(2012).
40.Cheng, Y., Zhang, M., Yao, G., Yang, L., Tao, J., Gong, Z., He, G., Sun, Z., “Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method,” Journal of Alloys and Compounds, Vol. 662, pp.179-184(2016).
41.Dittrich, K. H., Leoard, L. G., “Microarc oxidation of aluminum alloy components,” J.Crys.Res.Technol.,Vol. 20, No. 1, pp.93-96(1985).
42.Dearnley, P. A., Gummersbach, J., Weiss, H. et al., “The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure,” Wear, Vol. 229, pp.127-134(1999).
43.Dumitriu D., Bally A.R., Ballif C., Hones P., Schmid P.E., Sanjinés R., Lévy F. and Pârvulescu V.I., “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering,” Applied Catalysis B: Environmental, Vol. 25, pp.83-92(2000).
44.Dorozhkin, S. V., “7-Surface modification of magnesium and its biodegradable alloys by calcium orthophosphate coatings to improve corrosion resistance and biocompatibility,” Surface Modification of Magnesium and its Alloys for Biomedical Applications, Vol. 2, pp.151-191(2015).
45.Du, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., “High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition,” Journal of Alloys and Compounds Vol. 687, pp.893-897(2016).
46.Department of Chemistry, Rutgers University, 315 Penn St., “Camden, NJ 08102, USA Renewable and Sustainable Energy Reviews, Vol. 72,” pp.981-1000(2017).
47.Fujishima A. and Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature,” Vol. 238, pp.37-38(1972).
48.Fazel, H.R. Salimijazi, M.A. Golozar, M.R. Garsivaz, jazi, “A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti-6Al-4V alloy treated bymicro-arc oxidation process,” Applied Surface Science, Vol. 324 pp.751-756(2015).
49.Guntershulze, A., Betz, H., “Elektroliticheskie Kondensatory (electrolytic capacitors), Obornizidat,” Moscow, pp.238(1938).
50.Gómez, M., Magnusson, E., Olsson, E., Hagfeldt, A., Lindquist S. E., and Granqvist, C.G., “Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness,” Solar Energy Materials and Solar Cells, Vol. 62 pp.269-263(2000).
51.Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al., “Composition and adhesion of protective coatings on aluminum,” Surface and Coatings Technology, Vol. 145, No. 13, pp.146-151,(2001).
52.Guangliang Y, L. Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsum, “Journal of Alloys and Compounds, ” Vol. 345, pp.196-200,(2002).
53.Galusha, J. W. Tsung, C. K., Stucky G. D. and Bartl M. H., “Optimizing sol-gel infiltration and processing methods for the fabrication of high-quality planar titania inverse opals”, Chemistry of Materials, Vol. 20 pp.4925-4930(2008).
54.Hagfeldt, A., and Grätzel, M., “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, Vol. 95, pp.49-68(1995).
55.Ha, H. Y. and Anderson, M. A., “Photocatalytic degration of formic acidvia metal-supported titania,” J. Environ. Engin., Vol. 122, pp.217-221(1996).
56.Hoess, A., Teuscher, N., Thormann, A., Aurich, H. and Heilmann, A., “Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes,” Acta Biomaterialia, Vol. 3, pp.43-55(2007).
57.Hailun, Z., Jie, Z., Guoying, S., Yaogang, Li., Qinghong Z., Hongzhi, W., “Directly grown anatase TiO2 films via liquid phase deposition as the photoanodes for dye-sensitized solar cells,” Electrochimica Acta, Vol. 179, pp.197-205(2015).
58.Hyoung-il K., Doohun, K., Wooyul, K., Yoon-Cheol H., Seong-Ju S., Sujeong K. and Wonyong C., “Anodic TiO2 nanotube layer directly formed on the inner surface of Tipipe for a tubular photocatalytic reactor,” Applied Catalysis A, General, Vol. 521, pp.174–181(2016).
59.Ikonopisov, S., “Theory of electrical breakdown during formation of barrier anodic films,” J.Electrochim.Acta, Vol. 22, No. 10, pp.1077-1082,(1977).
60.Imai H., Matsuta, M., Shimizu, K., Hirashima, H. and Negishi, N., “Preparation of TiO2 fibers with well-organized structures,” Journal of Materials Chemistry, Vol. 10, pp.2005-2006(2000).
61.Krysmann, W., Kurze, P., Dittrich, H. G., “Process characteristics and parameters of oxidation by spark discharge (ANOF),” Cryst Res Technol, Vol. 19, No. 7,(1984).
62.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., “Formation of titanium oxide nanotube,” Longmuir, Vol. 14 pp.3160-3163(1998).
63.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., “Titania nanotubes prepared by chemical processing,” Advanced Materials, Vol. 11 pp.1307-1311(1999).
64.Ku, Y., Lee, Y. C. and Wang, W. Y., “Photocatalytic Decomposition of 2-Chlorophenol in Aqueous Solution by UV/TiO2 Process with Applied External Bias Voltage,” Journal of Hazardous Materials, B138 , pp.350-356(2006).
65.Karbowniczek, J., Muhaffel, F., Cempura, G., Cimenoglu, H., Czyrska-Filemonowicz A., “Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy,” Surface and Coatings Technology, Vol. 321, pp.97-107(2017).
66.Levin, E. M., McMurdie, H.F., Phase Diagrams for Ceramists, Vol. 11,(1975).
67.Linsebigler A. L., Lu G., Yates Jr. J. T. “Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem,” Rev. 95, pp.735-758(1995).
68.Liu B. and Aydil S., “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conduction substrates for dye-sensitized solar cell,” Journal of the American Society, Vol. 131, pp.3985-3990(2009).
69.Lu, G.H., Chen, H., Ga, W. C., Li, L., Niu, E. W., Zhang X. H., and Yang, S. Z., “Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology,” Journal of Materials Processing Technology,Vol. 208, pp.9-13(2008).
70.Linkang, Z., Jianjun Lu., “Fabrication and application of mesoporous TiO2 film coated on Al wire by sol-gel method with EISA,” Vol. 402, pp.369–371,(2017).
71.Markov G A, Markova G V., “Method for forming anodes of electrolytic capacitors,” Ussr patent, pp.526-961(1976).
72.Markov, G. A., Mironova, M. K., Potapova, O. G., “Izvetiya Akademiij Nauk. Neogranicheskie Materialy,” Vol. 19, No. 7, pp.110(1983).
73.Malyshev, V. N, Malysheva, N. V., “A Method for Forming WearResistant Coatings,” RF Patent, No. 202, pp.68-90(1988).
74.Mo S.-D. and Ching W. Y., “Electronic and optical properties of three phases of titanium dioxide Rutile, anatase, and brookite," Physical review B, vol. 51, pp.13023-13032(1995).
75.Mor, G.K., Varghese, O.K., Paulose, M., Shankar K. and Grimes, C.A., “A review on highly ordered, vertically oriented TiO2 nanotube arrays:fabrication, material properties and solar energy applications,” Solar Energy Materials and Solar Cells, Vol. 90, pp.2011-2075(2006).
76.Nie, X., Meletis, E. I., Jlang, J. C., et al., “Abrasive wear corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis,” Surface and Coatings Technology, Vol. 149, No. 23, pp.245-251,(2002).
77.Naofumi Ohtsu, Kento Yokoi, “Surface structure and photocatalytic performance of an anodic oxide layer fabricated on titanium in a nitrate/ethylene glycol electrolyte with different treatment durations,” Surface & Coatings Technology, Vol. 294, pp.109-114(2016).
78.Rudnev, V. S., Yarovaya, T. P., Boguta, D. L., et al., “Anodic spark deposition of P, Me(II) or Me(III) containing coatings on aluminium and titanium alloys in electrolytes with polyphosphate complexes,” Journal of Electroanalytical Chemistry, Vol. 497, No. 12, pp.150-158,(2001).
79.Rudnev, V. S., and Vasileva, M. S.“On the Surface Structure of Coatings Formed by Anodic Spark Method," Protection of Metals, Vol. 40, No. 4, pp.352-357(2004).
80.Sawunyama, P., Yasumori A., and Okada, K., “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin,” Vol. 33 pp.795-801(1998).
81.Song, W., Xiaohong, W., Wei Q., and Zhaohua, J., “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell,” Electrochimica Acta, Vol. 53, pp.1883-1889(2007).
82.Sawsen, N., Nadia, S., Samira, S., Mohammed, F., Mogtaba M., Nadia, A. L., Nouar, T., “Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates," Applied Surface Science, Vol. 395, pp.172–179(2017).
83.Twite, R. L., Bierwagen, P. G., “Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys," Progress in organic coatings, Vol. 33, No. 2, pp.91-100,(1998).
84.Van, T. B, Brown, S. D. and Wirtz, P. G., “Mechanism of anodic spark deposition," American Ceramic Society Bulletin, Vol. 56 No. 6, pp.563-566,(1977).
85.Vinodgopal K. and Kamat P.V., “Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Film,” Environment Science and Technology, Vol. 29, pp.841-845(1995).
86.Vinu, R., and Madras, G., “Environmental remediation by photocatalysis," Journal of the Indian Institute of Science, Vol. 90, No. 2, pp.189-230(2010).
87.Wirtz, G. P., Brown, S. D., Kriven, W. M., “Ceramic Coatings By Anodic Spark Deposition,” Materials and Manufacturing Processes, Vol. 6, No. 1, pp.87-115,(1991).
88.Wei D., Zhou Y., Jia D. and Wang Y., “Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications,” Acta Biomaterialia, Vol. 254, pp.1775-1782(2008).
89.Wu, S. Y., Lo, W. C., Chen K. C., and He, J. L., “Study on the preparation of nano-flaky anatase titania films and photovoltaic application," Renewable Energy International Conference and Exhibition, Vol. 10, pp.180-183(2009).
90.Xin S G, Jiang Z H, Wang F P, et al., “Effect of current density on Al alloy microplasma oxidation," Journal of Materials Science & Technology, Vol. 17, No. 6, pp.657-660(2001).
91.Xue W, Wang C , Chen R , Deng Z.“Structure and properties characterization of coatings produced on Ti-6Al-4V alloy by micro-arc oxidation in aluminum,”. Mater Lett, 52, pp.435-441(2002).
92.X. Liu, P.K. Chu and C. Ding, “Surface modification of titanium, titanium alloys and related materials for biomedical applications,” Materials Science and Engineering R, 47 49-121(2004).
93.Xiang, N., Song, R. G., Xiang, B., Li, H., Wang, Z. X. and Wang, C., “A study on photocatalytic activity of micro-arc oxidation TiO2 filmsand Ag+/MAO-TiO2 composite films,” Applied Surface Science, Vol. 347 pp.454-460(2015).
94.Xu, J.L., Xiao, Q.F., Mei, D. D., Tong, Y. X., Zheng, Y. F., Li, L. and Zhong Z. C., “Microstructure, corrosion resistance and formation mechanism of alumina micro-arc oxidation coatings on sintered NdFeB permanent magnets,” Surface and Coatings Technology, Vol. 309 pp.621-627,(2017).
95.Yerokhin, A. L., Lyubimov, V. V., Ryzhov A. N., “Electrochemical and Electro physical Treatment of Materials,” Tula TulGTU,(1993).
96.Yerokhin, A. L., Voevodin, A. A., Lyubimov, V. V., et al., “Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys,” Surface and Coatings Technology, Vol. 110, No. 3, pp.140-146,(1998).
97.Yerokhin, A. L., Nie, X., Leyland, A, et al., “Plasma electrolysis for surface engineering,” Surface and Coatings Technology, Vol. 122, No. 23, pp.73-93,(1999).
98.Yerokhin A L, Nie X, Leyland A., “Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surface & Coatings Technology,” Vol 130, No. 23, pp.195-206(2000).
99.Y. Li., T. J. White, and S. H. Lim., “Low-temperature synthesis and microstructural control of titania nano-particles, ” Journal of Solid State Chemistry, Vol. 177, Iss. 4-5, pp.1372-1381(2004).
100.Yu, B.Y., Tsai, A., Tsai, S. P., Wong, K.T., Yang, Y., Chu, C.W. and Shyue, J. J., “Efficient inverted solar cells using TiO2 nanotube arrays,” Nanotechnology, Vol. 19, No. 25,(2008).
101.Yuan, X., Tan, F., Xu, H., Zhang, S., Qu, F., Liu, J., “Effects of different electrolytes for micro-arc oxidation on the bond strength between titanium and porcelain,” journal of prosthodontic research, pp.297-304(2016).
102.Zhang, Y., Fan, W., Du, H. Q., Zhao, Y. W., Song, R. G. and Xiang, N., “Microstructure and photocatalytic property of TiO2 and Fe3+ :TiO2 films produced by micro-arc oxidation,” Vol. 315, pp.196-204(2017).