跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 10:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晉揚
研究生(外文):CHANG, CHIN-YANG
論文名稱:植物工廠小黃瓜(Cucumis sativus L.)生長模式之建構與評估
論文名稱(外文):The Construction and Evaluation of Cucumber (Cucumis sativus L.) under Plant Factory
指導教授:余聰安
指導教授(外文):Tsong, Ann Yu
口試委員:江主惠王三太余聰安李泰林
口試委員(外文):Chiang,chu huiWang,san taiTsong, Ann YuLi, tai lin
口試日期:2018-07-19
學位類別:碩士
校院名稱:大葉大學
系所名稱:分子生物科技學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:42
中文關鍵詞:植物工廠小黃瓜產量評估果實品質
外文關鍵詞:Plant factoryCucumberYield assessmentFruit quality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
小黃瓜為現今常見的生食蔬菜之一,目前的小黃瓜都是以溫室栽培為主,然而小黃瓜植株的病蟲害相當多,在植株生長時需要噴灑大量的農藥,這原因使得這些小黃瓜並不適合生吃,因此本次實驗希望能夠藉由植物工廠來產出無毒無農藥且品質又高的小黃瓜。實驗的結果顯示了,小黃瓜植株在植株工廠中的生長狀況良好。藉由測量酸鹼值(The power of Hydrogen、簡稱pH)與導電率(Electrical resistivity and conductivity、簡稱EC)來得知植株在生長1個半月後會需要大量的養分與水分的供給。小黃瓜的果實在上架後的第30天即可採收到第一根。關於產量:(1)未修剪的部分為219根,共28.2公斤,可採收3個月。(2)有修剪的部分為529根,共63公斤,可採收4個月。(3)特殊條件為143根,共8.6公斤,可採收1個月。進行果實品質的比較,以筆直果數量與彎曲果數量的比值作為果實品質的量化,結果顯示,在植株有做修剪的情況下,果實品質從9 (第一個月) 下降到2.3 (第4個月),而未修剪的則從2.3 (第一個月) 下降到1 (第3個月)。最後觀察枝條數對於產量的影響,結果也顯示留3條枝條的產量最高。
關鍵字:植物工廠、小黃瓜、產量評估、果實品質
Cucumber is one of the most economic vegetable worldwide. It also is one of the highest pesticide residues crops. For maintaining cucumber quality, high frequencies of pesticide spray were applied for cucumber cultivation. This study's aim was to produce the high quality cucumber with pesticide-free. Plant factory is a better approach to produce crops under correctly controlling plant growth conditions. The results showed that cucumber plants grew vigor under plant factory. By measuring and correcting pH and EC values, the hydroponic solutions was maintained optimal conditions for plant growing. The first fruit was harvested the thirty days after planting. We compared different thinning treatments on fruit quantity and quality. (1) 219 numbers of fruit and 28.2 Kg of total fresh weight were harvested three months after planting under control (non-thinning) treatment. (2) 529 numbers of fruit and 63 Kg of total fresh weight were harvested four months after planting under thinning treatment. (3) 143 numbers of fruit and 8.6 Kg of total fresh weight were harvested one month after planting under the special treatment. The radios of straight and curved fruit were 9:1 in special treatment, 7:3 in thinning treatment and 6:4 in control treatment, respectively. Finally, we alsocompared varied numbers of main shoot on yield. The results showed that tree numbers of main shoot was the best yield.
Keywords:Plant factory, Cucumber, Yield assessment, Fruit quality
封面內頁
簽名頁
中文摘要 iii
英文摘要 iv
誌謝 v
目錄 vi
圖目錄 viii
表目錄 ix
1. 前言 1
1.1 植物工廠 2
1.2 小黃瓜 3
2. 材料與方法 5
2.1 小黃瓜品種之選擇 5
2.2 苗株的消毒與栽培方式 6
2.3 植物工廠設備簡介 6
2.4 小黃瓜植株在植物工廠種植過程pH與EC之變化 7
2.5 小黃瓜之植株生長與修剪 7
2.6 不同重量果實之採收比較 8
2.7 植物工廠小黃瓜在不同時段的採收量. 9
2.8 小黃瓜果實品質之統計 9
2.9 不同的修剪方式對小黃瓜植株在植物工廠中產量的影響 9
3. 結果 10
3.1 小黃瓜植株生長過程中EC和pH值的變化 10
3.2 小黃瓜植株與果實的生長情形 11
3.3 小黃瓜之採收月份統計 11
3.4 小黃瓜之分量統計 12
3.5 小黃瓜在不同月份採收之品質評估 13
3.6 小黃瓜之不同枝條數對採收量的影響 13
4. 討論與結論 15
參考文獻 31
1. Bélanger, R. R., & Benyagoub, M. 1997. Challenges and prospects for integrated control of powdery mildews in the greenhouse. Canadian Journal of Plant Pathology, 19: 310-314.
2. Bakker, J. C. 1985. Physiological disorders in cucumber under high humidity conditions and low ventilation rates in greenhouses. Acta Horticulturae, 156: 257-264.
3. Bernardini, C., Zannoni, A., Bertocchi, M., Tubon, I., Fernandez, M., & Forni, M. 2018. Water/ethanol extract of Cucumis sativus L. fruit attenuates lipopolysaccharide-induced inflammatory response in endothelial cells. BMC Complementary and Alternative Medicine, 18: 194.
4. Carver, T. L. W., Ingerson-Morris, S. M., Thomas, B. J., & Zeyen, R. J. 1995. Early interactions during powdery mildew infection. Canadian Journal of Botany, 632-639.
5. Domingues, D. S., Takahashi, H. W., Camara, C. A. P., & Nixdorf, S. L. 2012. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84: 53-61.
6. Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. Acta Horticulturae, 956: 37-49.
7. Goto, E. 2016. Chapter 15 - Production of Pharmaceuticals in a Specially Designed Plant Factory. In T. Kozai, G. Niu, & M. Takagaki (Eds.), Plant Factory, San Diego: Academic Press. p. 193-200. 8. Hirata, K. 1966. Host range and geographical distribution of the powdery mildew fungi, Japan:Japan Scientific Societies Press, p. 5-83.
9. Ioslovich, I., & Gutman, P.O. 2000. Optimal control of crop spacing in a plant factory. Automatica, 36: 1665-1668.
10. Khoshkam, S. 2016. The effect of pruning and planting density on yield of greenhouses cucumber in Jiroft. International Journal of Scientific Engineering and Applied Science, 2: 212-227.
11. Kim, J.W. 2010. Trend and direction for plant factory system. Journal of Plant Biotechnology, 37: 442-455.
12. Kozai, T. 2013. Sustainable plant factory closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta horticulturae, 1004: 27-40.
13. Lee, D. C. C. a. C. C.-T. S. J. K. B. 2011. Growth and Yield Response of Three Aeroponically Grown Potato Cultivars (Solanum tuberosum L.) to Different Electrical Conductivities of Nutrient Solution. American Journal of Potato Research, 88: 450-458.
14. Lin, K.H., Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W., & Yang, C.M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150: 86-91.
15. Mariko, S. Shinichi, K. Takashi, I. Atsushi, M. 2014. Consumer Evaluation of Plant Factory Produced Vegetables. Focusing on Modern Food Industry, 3: 1-9.
16. Morimoto, T., Torii, T., & Hashimoto, Y. 1995. Optimal control of physiological processes of plants in a green plant factory. Control Engineering Practice, 3: 505-511.
17. Papadopoulos, A. P. 1994. Artificial light and temperature control. Growing greenhouse seedless cucumbers in soil and in soilless media, Ottawa: Agriculture and Agri-Food Canada. p. 44-45.
18. Peil, R. M. & López-Gálvez, J. 2002. Effect of fruit removal on growth and biomass partitioning in cucumber. Acta Horticulturae, 588: 69-74
19. Suwon. 2010. The development of container-type plant factory and growth
of leafy vegetables as affected by different light sources. Journal of Bio-Environment Control, 4: 333-342.
20. Tabatabaie, S. J. Nazemiyeh, J. N. Zehtab, H. S. Azarmi, F. 2007. Influence of various electrical conductivity levels on the growth and essential oil content of peppermint (Menta Piperita L) grown in hydroponic. Acta Horticulturae, 747: 197-201.
21. Takagaki, M., Hara, H., & Kozai, T. 2016. Chapter 5 - Micro- and Mini-PFALs for improving the quality of life in urban areas. In T. Kozai, G. Niu, & M. Takagaki (Eds.), Plant Factory, San Diego: Academic Press. p. 91-104.
22. Ting, W. F., Zhen, A. X., Liang, L. J., & Fan, X. K. 2005. Effect of potassium fertilization on quality of cucumber in solar-greenhouse. Journal of Shandong Agricultural University, 1: 93-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top