跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍凱霖
研究生(外文):Kai-Lin Lan
論文名稱:二氧化矽及氫氧基磷灰石奈米粉末製備技術之研究
論文名稱(外文):To Study the Processes of Preparation Technology of the SiO2 and HA Nano-Powder
指導教授:廖芳俊
指導教授(外文):Liao, Fang-Chun
口試委員:王星豪洪博彥
口試委員(外文):Wang, Shing-HoaHoung, Boen
口試日期:2017-12-28
學位類別:碩士
校院名稱:大葉大學
系所名稱:醫療器材設計與材料碩士學位學程
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:57
中文關鍵詞:微波法水熱法外觀形貌晶構強度粒徑尺寸奈米粉末
外文關鍵詞:Microwave MethodHydrothermal MethodMorphologyCrystalline Structure IntensityParticle SizeNano-powder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究選擇水熱法與微波法分別進行奈米粉末的製作,其中水熱法試驗使用的材料為拉製單晶矽柱後廢棄之石英坩堝碎片,而微波法所選用物料除了廢坩堝碎片外,也選擇早餐店丟棄之蛋殼。物料皆經徹底清潔與磨研粉碎等前處理後,始成為實驗之初始物料。
其中微波試驗乃藉由調整微波時間與輸出功率之參數組合,至於水熱試驗則是於固定溫度及持溫時間下,探討礦化劑濃度改變的影響,並對產物之外觀形貌、晶體結構及粒徑尺寸進行檢測分析。
實驗結果顯示,經微波法製成之氫氧基磷灰石及二氧化矽粉末,將隨時間增長或功率增強,產物之粒徑尺寸及晶構強度皆有增長的趨勢。而經水熱法製得之二氧化矽粉末,會因礦化劑濃度的調整,使產物之外觀樣貌出現截然不同的結果。當礦化劑濃度低於0.3 M時,產物形貌如花瓣般綻放之奈米薄片;濃度提高至0.4 M以上時,粉末將轉變為次微米之多面體顆粒,兩產物皆為標準之α-quartz石英結構。且由分散數據得知,研磨時間越長、分散效果將越佳。但過長之研磨時間,大部分產物已磨至奈米等級,此時已失去產物之實際尺寸樣貌。
綜合上述結果,採微波法行氫氧基磷灰石或二氧化矽α-quartz的製作,皆可製備出奈米尺度之粉末產物。而選用水熱方式來製備α-quartz粉末,則需控制礦化劑濃度在0.3 M以下,方可獲得奈米薄片狀粉末,否則產物將轉換為近奈米尺度之次微米多面體顆粒。
This study selects the hydrothermal and microwave methods to produce the nano-powders, separately. The experimental material used in hydrothermal test was discarded crucible fragments which after fabricated the single crystal silicon ingot. In addition to the scrapped crucible fragments, the eggshells dumped from breakfast restaurant was also selected for microwave method. All materials were preprocessed with thorough cleaning and grinding, and smashed to be used as the initial materials for following experiments.
The microwave test is performed with adjusting the combination parameters of microwave time and power output. However, the hydrothermal test is under a fixed temperature and holding time, to study the influence of mineralizer concentration, and conduct with measurement and analysis on the morphology, crystalline structure and particle size of products.
From experimental results show that the particle size and crystalline structure intensity of the hydroxyapatite and silica powder produced by microwave method, show an increasing trend with time or power increased. However, the silica powder produced by hydrothermal method will show completely different morphology with adjusting the concentration of mineralizer. When mineralizer concentration is lower than 0.3 M, the appearance of product is like a petal blossom nanoflake; when the concentration is increased to above 0.4 M, the powder transforms into submicron polyhedral particles, where both products exist the standard α-quartz structure. From the dispersion data, it is known that the longer the grinding time, the better the dispersed effect. However, with too long time grinding will cause most of the products ground to nano-grade. In this case, the actual size and appearance of products vanished.
Based on above results, to manufacture the nano-scale hydroxyapatite or silica α-quart powder can be achieved by using the microwave method. However, using the hydrothermal method to fabricate α-quartz powder, the concentration of mineralizer needs to be controlled below 0.3 M to obtain nanoflake-shaped powder, otherwise product will convert into near nano-scaled sub-micron polyhedral-shaped particles.
目錄
封面內頁
簽名頁
中文摘要.......iii
ABSTRACT.......v
誌謝.......vii
目錄.......viii
圖目錄.......x
表目錄.......xii
化學反應式目錄.......xiii

第一章 前言.......1
第二章 文獻回顧.......3
2.1 碳酸鈣的簡介[1].......3
2.2 氫氧基磷灰石的簡介[1].......4
2.3 二氧化矽的簡介.......6
2.4 奈米材料的製備方法.......8
2.4.1 氣相製備.......8
2.4.2 液相製備.......9
2.5 Shih-Ching Wu等人文獻[4].......11
2.6 Fatemeh Mohandes等人文獻[5].......13
2.7 Ki Do Kim等人文獻[6].......17
第三章 實驗方法.......20
3.1 實驗材料.......20
3.2 實驗規劃與分析流程.......21
3.3 產物之實驗設備.......26
3.3.1 微波法製程--微波爐.......26
3.3.2 水熱法製程--恆溫反應爐.......26
3.4 產物之檢測設備.......27
3.4.1 X光繞射儀(XRD).......27
3.4.2 場發射掃描式電子顯微鏡(FE-SEM).......28
3.4.3 籃式研磨機.......29
3.4.4 粒徑分析儀.......30
第四章 實驗結果分析與討論.......31
4.1 微波法製備氫氧基磷灰石產物觀察與分析.......31
4.1.1 微波法製備氫氧基磷灰石之外觀形貌分析.......32
4.1.2 微波法製備氫氧基磷灰石之晶體結構分析.......34
4.1.3 微波法製備氫氧基磷灰石之粒徑分布分析.......35
4.2 微波法製備二氧化矽產物觀察與分析.......39
4.2.1 微波法製備二氧化矽之外觀形貌分析.......39
4.2.2 微波法製備二氧化矽之晶體結構分析.......41
4.2.3 微波法製備二氧化矽之粒徑分布分析.......43
4.3 水熱法製備二氧化矽產物觀察與分析.......47
4.3.1 水熱法製備二氧化矽之外觀形貌分析.......47
4.3.2 水熱法製備二氧化矽之晶體結構分析.......49
4.3.3 水熱法製備二氧化矽之粒徑分布分析.......50
第五章 結論.......54
參考文獻.......56

[1] 碳酸鈣、氫氧基磷灰石、二氧化矽,維基百科(2012),http://zh.wikipedia.org/zh-tw/。
[2] 碳酸鈣、氫氧基磷灰石、二氧化矽,百度百科,http://baike.baidu.com/。
[3] 鍾佳芸,“溶膠-凝膠法製備分子拓印高分子”,國立成功大學碩士論文,pp.10-11,2004。
[4] Shih-Ching Wu, Hsi-Kai Tsou, Hsueh-Chuan Hsu, Shih-Kuang Hsua, Shu-Ping Liou, Wen-Fu Ho, “A Hydrothermal Synthesis of Eggshell and Fruit Waste Extract to Produce Nanosized Hydroxyapatite”, Ceramics International 39, pp.8183-8188, 2013.
[5] Fatemeh Mohandes, Masoud Salavati-Niasari, Mohammadhossein Fathi, Zeinab Fereshteh, “Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanis”, Materials Science and Engineering: C 45, pp.29-36, 2014.
[6] Ki-Do Kim, Hyun-Joo Bae, Hee-Taik Kim, “Synthesis and Growth Mechanism of TiO2-coated SiO2 Fine Particles”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, volume 221, pp.163-173, 2003.
[7] Wei-Hsiung Hon, “The Synthesis and Sintering of Nano-sized Hydroxyapatite”, National Cheng Kung University, Master thesis, May 2007.
[8] June-Yu Chine, “To Study the Techniques of Fabrication and Dispersion of Hydrothermal Submicron Silica Powder”, Da-Yeh University, Master thesis, January 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top