|
[1]衛生福利部, “衛生福利部全球網站中文版,” 衛生福利部, 26-Dec-2016. [Online]. Available: https://www.mohw.gov.tw/mp-1.html. [2]H. Hurwitz et al., “Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer,” N. Engl. J. Med., vol. 350, no. 23, pp. 2335–2342, Jun. 2004. [3]P. Laurent-Puig et al., “Analysis of PTEN, BRAF, and EGFR Status in Determining Benefit From Cetuximab Therapy in Wild-Type KRAS Metastatic Colon Cancer,” J. Clin. Oncol., vol. 27, no. 35, pp. 5924–5930, Dec. 2009. [4]E. H. Romond et al., “Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer,” N. Engl. J. Med., vol. 353, no. 16, pp. 1673–1684, Oct. 2005. [5]C. E. Geyer et al., “Lapatinib plus Capecitabine for HER2-Positive Advanced Breast Cancer,” N. Engl. J. Med., vol. 355, no. 26, pp. 2733–2743, Dec. 2006. [6]T. J. Lynch et al., “Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib,” N. Engl. J. Med., vol. 350, no. 21, pp. 2129–2139, May 2004. [7]F. A. Shepherd et al., “Erlotinib in Previously Treated Non–Small-Cell Lung Cancer,” N. Engl. J. Med., vol. 353, no. 2, pp. 123–132, Jul. 2005. [8]S. L. Topalian et al., “Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab,” J. Clin. Oncol., vol. 32, no. 10, pp. 1020–1030, Apr. 2014. [9]R. S. Herbst et al., “Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial,” The Lancet, vol. 387, no. 10027, pp. 1540–1550. [10]T. Powles et al., “Updated efficacy and tolerability of durvalumab in locally advanced or metastatic urothelial carcinoma.,” J. Clin. Oncol., vol. 35, no. 6_suppl, pp. 286–286, Feb. 2017. [11]A. Apolo et al., Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study, vol. 35. 2017. [12]N. P. Minton, “Clostridia in cancer therapy.,” Nat. Rev. Microbiol., vol. 1, no. 3, pp. 237–242, 2003. [13]J. M. Pawelek, K. B. Low, and D. Bermudes, “Bacteria as tumour-targeting vectors,” Lancet Oncol., vol. 4, no. 9, pp. 548–556, Sep. 2003. [14]S. A. Hoption Cann, J. P. van Netten, and C. van Netten, “Dr William Coley and tumour regression: a place in history or in the future,” Postgrad. Med. J., vol. 79, no. 938, pp. 672–680, Dec. 2003. [15]E. F. McCarthy, “The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas,” Iowa Orthop. J., vol. 26, pp. 154–158, 2006. [16]COLEY WB, “The treatment of inoperable sarcoma with the ’mixed toxins of erysipelas and bacillus prodigiosus.: Immediate and final results in one hundred and forty cases.,” J. Am. Med. Assoc., vol. XXXI, no. 9, pp. 456–465, Aug. 1898. [17]厚井芳則, 今井一洋, 田村善藏, and 橋本嘉幸, “ANTITUMOR EFFECT OF BIFIDOBACTERIUM INFANTIS IN MICE,” GANN Jpn. J. Cancer Res., vol. 69, no. 5, pp. 613–618, 1978. [18]R. A. Malmgren and C. C. Flanigan, “Localization of the Vegetative Form of Clostridium tetani in Mouse Tumors Following Intravenous Spore Administration,” Cancer Res., vol. 15, no. 7, p. 473, Aug. 1955. [19]D. T. Le et al., “A Live-Attenuated Listeria Vaccine (ANZ-100) and a Live-Attenuated Listeria Vaccine Expressing Mesothelin (CRS-207) for Advanced Cancers: Phase I Studies of Safety and Immune Induction,” Clin. Cancer Res., vol. 18, no. 3, p. 858, Feb. 2012. [20]J. Nemunaitis et al., “Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients,” Cancer Gene Ther., vol. 10, no. 10, pp. 737–744, Oct. 2003. [21]I.-M. Lee, E. J. Shiroma, F. Lobelo, P. Puska, S. N. Blair, and P. T. Katzmarzyk, “Impact of Physical Inactivity on the World’s Major Non-Communicable Diseases,” Lancet, vol. 380, no. 9838, pp. 219–229, Jul. 2012. [22]A. Watson and P. D Collins, Colon Cancer: A Civilization Disorder, vol. 29. 2011. [23]K. W. Jasperson, T. M. Tuohy, D. W. Neklason, and R. W. Burt, “Hereditary and Familial Colon Cancer,” Gastroenterology, vol. 138, no. 6, pp. 2044–2058, Jun. 2010. [24]S. I. Grivennikov, “Inflammation and colorectal cancer: colitis-associated neoplasia,” Semin. Immunopathol., vol. 35, no. 2, pp. 229–244, Mar. 2013. [25]D. Smith, M. Ballal, R. Hodder, G. Soin, S. Selvachandran, and D. Cade, “Symptomatic Presentation of Early Colorectal Cancer,” Ann. R. Coll. Surg. Engl., vol. 88, no. 2, pp. 185–190, Mar. 2006. [26]W. Hamilton, A. Round, D. Sharp, and T. J. Peters, “Clinical features of colorectal cancer before diagnosis: a population-based case–control study,” Br. J. Cancer, vol. 93, no. 4, pp. 399–405, Aug. 2005. [27]M. Astin, T. Griffin, R. D. Neal, P. Rose, and W. Hamilton, “The diagnostic value of symptoms for colorectal cancer in primary care: a systematic review,” Br. J. Gen. Pract., vol. 61, no. 586, pp. e231–e243, May 2011. [28]L. F. Jensen, L. Hvidberg, A. F. Pedersen, and P. Vedsted, “Symptom attributions in patients with colorectal cancer,” BMC Fam. Pract., vol. 16, p. 115, 2015. [29]A. M. Lacy et al., “Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial,” The Lancet, vol. 359, no. 9325, pp. 2224–2229, Jun. 2002. [30]R. Akhtar, S. Chandel, P. Sarotra, and B. Medhi, “Current status of pharmacological treatment of colorectal cancer,” World J. Gastrointest. Oncol., vol. 6, no. 6, pp. 177–183, Jun. 2014. [31]W. Shaib, R. Mahajan, and B. El-Rayes, “Markers of resistance to anti-EGFR therapy in colorectal cancer,” J. Gastrointest. Oncol., vol. 4, no. 3, pp. 308–318, Sep. 2013. [32]G. A. Higgins, J. H. Conn, P. H. Jordan, E. W. Humphrey, B. Roswit, and R. J. Keehn, “Preoperative radiotherapy for colorectal cancer.,” Ann. Surg., vol. 181, no. 5, pp. 624–631, May 1975. [33]L. E. Wroblewski, R. M. Peek, and K. T. Wilson, “Helicobacter pylori and Gastric Cancer: Factors That Modulate Disease Risk,” Clin. Microbiol. Rev., vol. 23, no. 4, pp. 713–739, Oct. 2010. [34]E. M. Burd, “Human Papillomavirus and Cervical Cancer,” Clin. Microbiol. Rev., vol. 16, no. 1, pp. 1–17, Jan. 2003. [35]E. Thursby and N. Juge, “Introduction to the human gut microbiota,” Biochem. J., vol. 474, no. 11, pp. 1823–1836, Jun. 2017. [36]N. Thevaranjan et al., “Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction,” Cell Host Microbe, vol. 21, no. 4, pp. 455-466.e4, Apr. 2017. [37]R. Havenaar, Intestinal health functions of colonic microbial metabolites: A review, vol. 2. 2011. [38]X. Han, H. Song, Y. Wang, Y. Sheng, and J. Chen, “Sodium butyrate protects the intestinal barrier function in peritonitic mice,” Int. J. Clin. Exp. Med., vol. 8, no. 3, pp. 4000–4007, 2015. [39]S. Y. Archer et al., “The histone deacetylase inhibitor butyrate downregulates cyclin B1 gene expression via a p21/WAF-1-dependent mechanism in human colon cancer cells,” Am. J. Physiol.-Gastrointest. Liver Physiol., vol. 289, no. 4, pp. G696–G703, Oct. 2005. [40]K. Cushing, D. M. Alvarado, and M. A. Ciorba, “Butyrate and Mucosal Inflammation: New Scientific Evidence Supports Clinical Observation,” Clin. Transl. Gastroenterol., vol. 6, no. 8, p. e108, Aug. 2015. [41]S. Fukumoto et al., “Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats,” Am. J. Physiol.-Regul. Integr. Comp. Physiol., vol. 284, no. 5, pp. R1269–R1276, May 2003. [42]B. F. Hinnebusch, S. Meng, J. T. Wu, S. Y. Archer, and R. A. Hodin, “The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation,” J. Nutr., vol. 132, no. 5, pp. 1012–1017, May 2002. [43]V. Salimi, Z. Shahsavari, B. Safizadeh, A. Hosseini, N. Khademian, and M. Tavakoli-Yaraki, “Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment,” Lipids Health Dis., vol. 16, no. 1, p. 208, Nov. 2017. [44]D. Mu, Z. Gao, H. Guo, G. Zhou, and B. Sun, “Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1,” PloS One, vol. 8, no. 9, p. e74922, 2013. [45]A.-Z. Decrion-Barthod et al., “Sodium Butyrate with UCN-01 Has Marked Antitumour Activity against Cervical Cancer Cells,” Anticancer Res., vol. 30, no. 10, pp. 4049–4061, Jan. 2010. [46]Y. Terao et al., “Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells,” Int. J. Cancer, vol. 94, no. 2, pp. 257–267, Oct. 2001. [47]F. Natoni, L. Diolordi, C. Santoni, and M. S. Gilardini Montani, “Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways,” Biochim. Biophys. Acta, vol. 1745, no. 3, pp. 318–329, Sep. 2005. [48]O. Witt, K. Sand, and A. Pekrun, “Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways,” Blood, vol. 95, no. 7, pp. 2391–2396, Apr. 2000. [49]F. M. Ruemmele, S. Schwartz, E. G. Seidman, S. Dionne, E. Levy, and M. J. Lentze, “Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway,” Gut, vol. 52, no. 1, pp. 94–100, Jan. 2003. [50]A. L. Gartel and A. L. Tyner, “The Role of the Cyclin-dependent Kinase Inhibitor p21 in Apoptosis 1 Supported in part by NIH Grant R01 DK56283 (to A. L. T.) for the p21 research and Campus Research Board and Illinois Department of Public Health Penny Severns Breast and Cervical Cancer grants (to A. L. G.).1,” Mol. Cancer Ther., vol. 1, no. 8, pp. 639–649, Jun. 2002. [51]S. Y. Archer, S. Meng, A. Shei, and R. A. Hodin, “p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 95, no. 12, pp. 6791–6796, Jun. 1998. [52]P. van Baarlen et al., “Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. Suppl 1, pp. 4562–4569, Mar. 2011. [53]A. O’Callaghan and D. van Sinderen, “Bifidobacteria and Their Role as Members of the Human Gut Microbiota,” Front. Microbiol., vol. 7, p. 925, 2016. [54]E. J. Whitford et al., “Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent, 5-Fluorouracil (5-FU),” Cancer Biol. Ther., vol. 8, no. 6, pp. 505–511, Mar. 2009. [55]J. Bien, V. Palagani, and P. Bozko, “The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease?,” Ther. Adv. Gastroenterol., vol. 6, no. 1, pp. 53–68, Jan. 2013. [56]E. Tavan, C. Cayuela, J.-M. Antoine, and P. Cassand, “Antimutagenic activities of various lactic acid bacteria against food mutagens: heterocyclic amines,” J. Dairy Res., vol. 69, no. 2, pp. 335–341, May 2002. [57]J. Gagnière et al., “Gut microbiota imbalance and colorectal cancer,” World J. Gastroenterol., vol. 22, no. 2, pp. 501–518, Jan. 2016. [58]U. Sonnenborn and J. Schulze, “The non-pathogenic Escherichia coli strain Nissle 1917 – features of a versatile probiotic,” Microb. Ecol. Health Dis., vol. 21, no. 3–4, pp. 122–158, Jan. 2009. [59]L. He et al., “Escherichia coli Nissle 1917 engineered to express Tum-5 can restrain murine melanoma growth,” Oncotarget, vol. 8, no. 49, pp. 85772–85782, Oct. 2017. [60]Y. Zhang et al., “Escherichia coli Nissle 1917 Targets and Restrains Mouse B16 Melanoma and 4T1 Breast Tumors through Expression of Azurin Protein,” Appl. Environ. Microbiol., vol. 78, no. 21, pp. 7603–7610, Nov. 2012. [61]G. Le Blay et al., “Short-chain fatty acids induce cytoskeletal and extracellular protein modifications associated with modulation of proliferation on primary culture of rat intestinal smooth muscle cells,” Dig. Dis. Sci., vol. 45, no. 8, pp. 1623–1630, Aug. 2000. [62]M K. S. N. A. M. M. M. H. J. T. S. A. and H D., “The anti proliferative and cytotoxic activity of sodium butyrate (SB) as a microbial product on human colorectal carcinoma cell lines,” Oct. 2014. [63]“Sodium butyrate modulates cell cycle-related proteins in HT29 human colonic adenocarcinoma cells - Coradini - 2000 - Cell Proliferation - Wiley Online Library.” [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2184.2000.00173.x/full. [Accessed: 08-Mar-2018]. [64]D. Tailor, E.-R. Hahm, R. K. Kale, S. V. Singh, and R. P. Singh, “Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells,” Mitochondrion, vol. 16, pp. 55–64, May 2014. [65]M. Saini, Z. W. Wang, C.-J. Chiang, and Y.-P. Chao, “Metabolic engineering of Escherichia coli for production of butyric acid,” J. Agric. Food Chem., vol. 62, no. 19, pp. 4342–4348, May 2014. [66]P. Gonçalves and F. Martel, “Regulation of colonic epithelial butyrate transport: Focus on colorectal cancer,” Porto Biomed. J., vol. 1, no. 3, pp. 83–91, Jul. 2016. [67]A. L. Gartel and A. L. Tyner, “Transcriptional regulation of the p21((WAF1/CIP1)) gene,” Exp. Cell Res., vol. 246, no. 2, pp. 280–289, Feb. 1999. [68]J. D. Amaral, J. M. Xavier, C. J. Steer, and C. M. Rodrigues, “The role of p53 in apoptosis,” Discov. Med., vol. 9, no. 45, pp. 145–152, Feb. 2010. [69]J. Stritzker, S. Weibel, P. J. Hill, T. A. Oelschlaeger, W. Goebel, and A. A. Szalay, “Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice,” Int. J. Med. Microbiol., vol. 297, no. 3, pp. 151–162, Jun. 2007.
|