|
1. Fujishima, A., & Honda, K, Electrochemical Photolysis of Water at a Semiconductor Electrode.pdf. Nature, 1972. 238(5358): p. 37-38. 2. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278. 3. C. Hao, Y.C.W., Screening and Characterization for the Optimization of Cadmium Sulfur-based Photocatalysts. 2015. 4. Kudo, A., Photocatalyst Materials for Water Splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38. 5. Casbeer, E., V.K. Sharma, and X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review. Separation and Purification Technology, 2012. 87: p. 1-14. 6. Lindgren, T., In Search of the Holy Grail of Photoelectrochemistry : A Study of Thin Film Electrodes for Solar Hydrogen Generation, in Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. 2004, Acta Universitatis Upsaliensis: Uppsala. p. 90. 7. Lindgren, T., A study of Thin Film Electrodes for Solar Hydrogen Generation. in Solid State Physics, 2004: p. p.3. 8. Chen, X., et al., Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010. 110(11): p. 6503-6570. 9. Tseng, I.H., W.-C. Chang, and J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 2002. 37(1): p. 37-48. 10. Baker, D.R. and P.V. Kamat, Photosensitization of TiO2Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Advanced Functional Materials, 2009. 19(5): p. 805-811. 11. Tong, R., et al., Efficiently Enhancing Visible Light Photocatalytic Activity of Faceted TiO2 Nanocrystals by Synergistic Effects of Core–Shell Structured Au@CdS Nanoparticles and Their Selective Deposition. ACS Applied Materials & Interfaces, 2016. 8(33): p. 21326-21333. 12. Jitputti, J., et al., Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. Vol. 180. 2007. 1743-1749. 13. Oekermann, T., et al., Electron Transport and Back Reaction in Nanocrystalline TiO2 Films Prepared by Hydrothermal Crystallization. The Journal of Physical Chemistry B, 2004. 108(7): p. 2227-2235. 14. Xi, G. and J. Ye, Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chemical Communications, 2010. 46(11): p. 1893-1895. 15. Huang, L., et al., Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis. Scripta Materialia, 2010. 63(2): p. 159-161. 16. Kamat, P.V., et al., Chapter 4 - Semiconductor nanoparticles, in Nanostructured Materials and Nanotechnology, H.S. Nalwa, Editor. 2002, Academic Press: San Diego. p. 129-182. 17. A. J. Bard, L.R.F., Electrochemical_methods_2ed_2001_-_Bard_Faulkner.pdf. Methods Fundamental and Applications 2nd Edition, 2000. 18. Kittel, C., Introduction to Solid State Physics. John Wiley & Sons Ltd, 2005. (8th): p. p.186. 19. Bott, A.W., Electrochemistry of Semiconductors, Current Separations. 1998. 17(3): p. 87-91. 20. Gaya, U.I. and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008. 9(1): p. 1-12. 21. Malato, S., et al., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009. 147(1): p. 1-59. 22. Ho, C.H. and S.L. Lin, Optical properties of the interband transitions of layered gallium sulfide. Journal of Applied Physics, 2006. 100(8): p. 083508. 23. George, P.J., et al., Properties of chemically deposited CdS thin films converted to n-type by indium diffusion. Journal of Crystal Growth, 1996. 158(1): p. 53-60. 24. Li, Q., et al., Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 2011. 133(28): p. 10878-10884. 25. Chen, S., et al., Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 177(2): p. 177-184. 26. Jian, J., et al., A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small, 2015. 11(39): p. 5262-5271. 27. Kandiel, T.A. and K. Takanabe, Solvent-induced deposition of Cu–Ga–In–S nanocrystals onto a titanium dioxide surface for visible-light-driven photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2016. 184: p. 264-269. 28. Qin, L., et al., CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015. 5(14): p. 1500010. 29. Zhao, L., et al., Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene. Nano Letters, 2013. 13(10): p. 4659-4665. 30. Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388. 31. Mak, K.F., et al., Measurement of the Optical Conductivity of Graphene. Physical Review Letters, 2008. 101(19): p. 196405. 32. Ito, J., J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of Applied Physics, 2008. 103(11): p. 113712. 33. Li, Y., et al., Preparation of Graphene–TiO2 nanotubes/nanofibers composites as an enhanced visible light photocatalyst using a hybrid synthetic strategy. Materials Science in Semiconductor Processing, 2014. 27: p. 695-701. 34. Liu, M., et al., Noble-metal-free photocatalysts MoS(2)-graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H(2) evolution. Chem Commun (Camb), 2014. 50(75): p. 11004-7. 35. Ruan, C., et al., Synthesis of porphyrin sensitized TiO2/graphene and its photocatalytic property under visible light. Materials Letters, 2015. 141: p. 362-365. 36. Al-Nafiey, A., et al., Nickel oxide nanoparticles grafted on reduced graphene oxide (rGO/NiO) as efficient photocatalyst for reduction of nitroaromatics under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017. 336: p. 198-207. 37. Hsieh, S.-H. and J.-M. Ting, Characterization and photocatalytic performance of ternary Cu-doped ZnO/Graphene materials. Applied Surface Science, 2018. 427: p. 465-475. 38. Bard, A.J., et al., Scanning electrochemical microscopy. Introduction and principles. Analytical Chemistry, 1989. 61(2): p. 132-138. 39. Maeda, H., et al., Microscopic Observation of TiO2 Photocatalysis Using Scanning Electrochemical Microscopy. The Journal of Physical Chemistry B, 1999. 103(16): p. 3213-3217. 40. Jaramillo, T.F., et al., Automated Electrochemical Synthesis and Photoelectrochemical Characterization of Zn1-xCoxO Thin Films for Solar Hydrogen Production. Journal of Combinatorial Chemistry, 2005. 7(2): p. 264-271. 41. Merrifield, R.B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society, 1963. 85(14): p. 2149-2154. 42. Nakayama, A., E. Suzuki, and T. Ohmori, Development of high throughput evaluation for photocatalyst thin-film. Applied Surface Science, 2002. 189(3): p. 260-264. 43. Jaramillo Thomas, F., et al., Combinatorial Electrochemical Synthesis and Screening of Mesoporous ZnO for Photocatalysis. Macromolecular Rapid Communications, 2003. 25(1): p. 297-301. 44. Baeck, S.H., et al., Combinatorial Electrochemical Synthesis and Characterization of Tungsten-Based Mixed-Metal Oxides. Journal of Combinatorial Chemistry, 2002. 4(6): p. 563-568. 45. Lettmann, C., H. Hinrichs, and F. Maier Wilhelm, Combinatorial Discovery of New Photocatalysts for Water Purification with Visible Light. Angewandte Chemie International Edition, 2001. 40(17): p. 3160-3164. 46. Leonard, K.C., et al., ZnWO4/WO3 Composite for Improving Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C, 2013. 117(31): p. 15901-15910. 47. Ye, H., H.S. Park, and A.J. Bard, Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C, 2011. 115(25): p. 12464-12470. 48. Hsu, H.-Y., et al., Optimization of PbI2/MAPbI3 Perovskite Composites by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C, 2016. 120(35): p. 19890-19895. 49. Haram, S.K. and A.J. Bard, Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interfaces. The Journal of Physical Chemistry B, 2001. 105(34): p. 8192-8195. 50. Liu, G., C. Liu, and A.J. Bard, Rapid Synthesis and Screening of ZnxCd1−xSySe1−y Photocatalysts by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C, 2010. 114(49): p. 20997-21002. 51. Lee, J., et al., Screening of Photocatalysts by Scanning Electrochemical Microscopy. Analytical Chemistry, 2008. 80(19): p. 7445-7450. 52. Jang, J.S., et al., Rapid Screening of Effective Dopants for Fe2O3 Photocatalysts with Scanning Electrochemical Microscopy and Investigation of Their Photoelectrochemical Properties. The Journal of Physical Chemistry C, 2009. 113(16): p. 6719-6724. 53. Berglund, S.P., et al., Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Physical Chemistry Chemical Physics, 2013. 15(13): p. 4554-4565. 54. Ye, H., et al., Rapid Screening of BiVO4-Based Photocatalysts by Scanning Electrochemical Microscopy (SECM) and Studies of Their Photoelectrochemical Properties. The Journal of Physical Chemistry C, 2010. 114(31): p. 13322-13328. 55. Bhattacharya, C., H.C. Lee, and A.J. Bard, Rapid Screening by Scanning Electrochemical Microscopy (SECM) of Dopants for Bi2WO6 Improved Photocatalytic Water Oxidation with Zn Doping. The Journal of Physical Chemistry C, 2013. 117(19): p. 9633-9640. 56. Niles, D.W., G. Herdt, and M. Al-Jassim, An x-ray photoelectron spectroscopy investigation of O impurity chemistry in CdS thin films grown by chemical bath deposition. Journal of Applied Physics, 1997. 81(4): p. 1978-1984. 57. Liu, H.-T., et al., L-cysteine-assisted Synthesis of AgInS2 Microspheres. Vol. 26. 2011. 1221-1226. 58. Hota, G., S.B. Idage, and K.C. Khilar, Characterization of nano-sized CdS–Ag2S core-shell nanoparticles using XPS technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 293(1-3): p. 5-12. 59. Pei, X., et al., Structural and photoluminescence properties of SnO2:Ga films deposited on α-Al2O3 (0001) by MOCVD. Vol. 130. 2010. 1189-1193. 60. Chithra, M.J., K. Pushpanathan, and M. Loganathan, Structural and Optical Properties of Co-Doped ZnO Nanoparticles Synthesized by Precipitation Method. Materials and Manufacturing Processes, 2014. 29(7): p. 771-779. 61. Jin, T., et al., Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes. Vol. 28. 2012.
|