跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠文
研究生(外文):CHEN, KUAN-WEN
論文名稱:硫化銦鎘為主之光觸媒優化與特性分析
論文名稱(外文):Optimization and Characterization of Indium Cadmium Sulfur-based Photocatalysts
指導教授:翁于晴翁于晴引用關係
指導教授(外文):WENG, YU-CHING
口試委員:周澤川杜景順
口試委員(外文):CHOU, TSE-CHUANDU, JING-SHUN
口試日期:2018-07-20
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:116
中文關鍵詞:光觸媒掃描式電化學顯微鏡硫化鎘硫化鎵石墨烯
外文關鍵詞:PhotocatalystScanning electrochemical microscopy (SECM)CdSGaSGraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於全球能源與環境問題,利用太陽能中可見光催化光觸媒分解水產生氫氣是一種環保而潔淨的方法。其中硫化鎘是一種可見光吸收之光觸媒,擁有能隙小和低成本之優點,卻容易受到光腐蝕而且不環保的缺點。我們先前的研究成果發現,In0.2Cd0.8S光觸媒相較CdS有更好的光催化活性,為了繼續降低其鎘含量和增強其光催化效果,我們進一步利用壓電噴射系統結合掃描式電化學顯微鏡篩選Mx(In0.2Cd0.8)1-xS光觸媒陣列。結果顯示摻雜30%鎵之光觸媒Ga0.3(In0.2Cd0.8)0.7S具有最佳的光催化活性,摻雜後之光觸媒較未摻雜前提升了4倍光電流,其載子濃度提高了2.3倍,因此其光催化活性增加,而光電轉換效率在400 nm波長下可達到73%。
石墨烯和氧化石墨烯電阻低、透光率高、摻雜進半導體材料中能降低其能隙,因此我們也將其摻雜進In0.2Cd0.8S光觸媒中進行討論,研究結果顯示摻雜0.05 wt%石墨烯之In0.2Cd0.8S,與摻雜0.1 wt%氧化石墨烯之In0.2Cd0.8S皆可提升其光觸媒活性,相較純In0.2Cd0.8S,其光電流分別提高2倍和2.5倍,載子濃度分別為提高1.5倍和2.3倍,提高電子電洞對產生機率,進而提升其光催化活性。

Due to global energy and environmental issues, the use of visible light catalyzed photocatalysts in solar energy to decompose water and produce hydrogen gas is an environmentally friendly and clean method. Cadmium sulfide (CdS) is a visible light absorption photocatalyst. The advantages of CdS are small energy gap and low cost, but CdS suffers light corrosion and it is not environmentally friendly. Our previous research found that In0.2Cd0.8S photocatalyst has better photocatalytic activity than CdS. In order to reduce cadmium content and enhance its photocatalytic activity, the piezoelectric injection system combined with scanning electrochemical microscope is used for screening of new composition of the photocatalysts. The Mx(In0.2Cd0.8)1-xS photocatalyst array was prepared and screened. The results show that Ga0.3(In0.2Cd0.8)0.7S has the best photocatalytic activity. The photocurrent of the Ga0.3(In0.2Cd0.8)0.7S photocatalyst has 4 times higher than that of the In0.2Cd0.8S photocatalyst. The carrier concentration of the Ga0.3(In0.2Cd0.8)0.7S photocatalyst has 2.3 times higher than that of the In0.2Cd0.8S photocatalyst, resulting in higher photocatalytic activity. The photoelectric conversion efficiency of the Ga0.3(In0.2Cd0.8)0.7S photocatalyst can reach 73% at 400 nm.
Graphene and graphene oxide have low resistance and high transmittance. When they are added into semiconductors, the energy gap of semiconductors can be reduced. Graphene and graphene oxide doped In0.2Cd0.8S photocatalysts are also discussed in this study. Results show that The photocurrent of the 0.05 wt% graphene-In0.2Cd0.8S and 0.1 wt% graphene oxide-In0.2Cd0.8S is increased 2 times. and 2.5 times than that of the pure In0.2Cd0.8S photocatalysts. The carrier concentration of the 0.05 wt% graphene-In0.2Cd0.8S and 0.1 wt% graphene oxide-In0.2Cd0.8S is increased 1.5 times and 2.3 times than that of the pure In0.2Cd0.8S photocatalysts. The addition of the graphene and graphene oxide could increase the generation probability of electron hole pair resulting in enhancing the photocatalytic activity of photocatalysts.
Key word: Photocatalyst, SECM, CdS, GaS, Graphene.

目錄
致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 光觸媒起源 3
1-3 研究動機 5
第二章 原理與文獻回顧 6
2-1 光觸媒基本原理 6
2-2 半導體光觸媒 9
2-2-1 半導體材料 9
2-2-2 半導體光觸媒分類 15
2-2-3 影響光催化效果之因素 18
2-3 硫系列光觸媒與文獻回顧 27
2-3-1 硫化鎘半導體 27
2-3-2 硫化銦半導體 27
2-3-3 硫化鎵半導體 28
2-3-4 硫化鎘、硫化鎵文獻回顧 28
2-4 石墨烯與氧化石墨烯 31
2-4-1石墨烯 31
2-4-1氧化石墨烯 32
2-4-1 石墨烯與氧化石墨烯文獻回顧 33
2-5 掃描式電化學顯微鏡 34
2-5-1 起源 34
2-5-2 回饋模式 (Feedback mode) 35
2-5-3 基材產生-微電極收集模式 (SG-TC mode) 37
2-5-4 光纖照光-基材收集模式(Optical fiber illumination-Subtract collection mode) 37
2-5-5 集成組合化學法與SECM快篩光觸媒文獻回顧 39
第三章 實驗設備與方法 43
3-1實驗材料 43
3-2實驗藥品 44
3-4檢測儀器 47
3-5實驗步驟 48
3-5-1 基材清洗 48
3-5-2 光觸媒陣列快篩實驗 48
3-5-3 光電極製備 52
3-5-4 光電極光電化學實驗 53
第四章 結果與討論 55
4-1 Mx(In0.2Cd0.8)1-xS半導體光觸媒陣列之篩選 55
4-1-1 光觸媒陣列之篩選 55
4-1-2 Gax(In0.2Cd0.8)1-xS 光觸媒陣列之再現性 60
4-1-3 Ga0.3(In0.2Cd0.8)0.7S 光觸媒陣列之特性分析 64
4-2 Ga0.3(In0.2Cd0.8)0.7S 光電極之特性分析 68
4-2-1 光電極表面型態 68
4-2-2 光觸媒晶型結構 70
4-2-3 光觸媒鍵結型態 73
4-2-4 光觸媒吸收波長 76
4-2-5 光觸媒之線性伏安掃描 78
4-2-6 光觸媒之光電流分析 80
4-2-7 光觸媒之光電轉換效率 82
4-2-8 光觸媒之交流阻抗 85
4-2-9 光觸媒水解產氣結果 88
4-2-10 綜合討論 89
4-3 石墨烯摻雜In0.2Cd0.8S半導體光電極之效應 90
4-3-1 光觸媒之光電流分析 90
4-3-2 光觸媒吸收波長 94
4-3-3 光觸媒表面型態 96
4-3-4 光觸媒晶型結構 98
4-3-5 光觸媒之光電轉換效率 99
4-3-6 光觸媒之交流阻抗 102
4-3-7 光觸媒水解產氣結果 104
4-3-8 綜合討論 105
4-4 穩定性測試 106
第五章 結論 108
參考文獻 111


1. Fujishima, A., & Honda, K, Electrochemical Photolysis of Water at a Semiconductor Electrode.pdf. Nature, 1972. 238(5358): p. 37-38.
2. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
3. C. Hao, Y.C.W., Screening and Characterization for the Optimization of Cadmium Sulfur-based Photocatalysts. 2015.
4. Kudo, A., Photocatalyst Materials for Water Splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
5. Casbeer, E., V.K. Sharma, and X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review. Separation and Purification Technology, 2012. 87: p. 1-14.
6. Lindgren, T., In Search of the Holy Grail of Photoelectrochemistry : A Study of Thin Film Electrodes for Solar Hydrogen Generation, in Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. 2004, Acta Universitatis Upsaliensis: Uppsala. p. 90.
7. Lindgren, T., A study of Thin Film Electrodes for Solar Hydrogen Generation. in Solid State Physics, 2004: p. p.3.
8. Chen, X., et al., Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010. 110(11): p. 6503-6570.
9. Tseng, I.H., W.-C. Chang, and J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 2002. 37(1): p. 37-48.
10. Baker, D.R. and P.V. Kamat, Photosensitization of TiO2Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Advanced Functional Materials, 2009. 19(5): p. 805-811.
11. Tong, R., et al., Efficiently Enhancing Visible Light Photocatalytic Activity of Faceted TiO2 Nanocrystals by Synergistic Effects of Core–Shell Structured Au@CdS Nanoparticles and Their Selective Deposition. ACS Applied Materials & Interfaces, 2016. 8(33): p. 21326-21333.
12. Jitputti, J., et al., Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. Vol. 180. 2007. 1743-1749.
13. Oekermann, T., et al., Electron Transport and Back Reaction in Nanocrystalline TiO2 Films Prepared by Hydrothermal Crystallization. The Journal of Physical Chemistry B, 2004. 108(7): p. 2227-2235.
14. Xi, G. and J. Ye, Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chemical Communications, 2010. 46(11): p. 1893-1895.
15. Huang, L., et al., Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis. Scripta Materialia, 2010. 63(2): p. 159-161.
16. Kamat, P.V., et al., Chapter 4 - Semiconductor nanoparticles, in Nanostructured Materials and Nanotechnology, H.S. Nalwa, Editor. 2002, Academic Press: San Diego. p. 129-182.
17. A. J. Bard, L.R.F., Electrochemical_methods_2ed_2001_-_Bard_Faulkner.pdf. Methods Fundamental and Applications 2nd Edition, 2000.
18. Kittel, C., Introduction to Solid State Physics. John Wiley & Sons Ltd, 2005. (8th): p. p.186.
19. Bott, A.W., Electrochemistry of Semiconductors, Current Separations. 1998. 17(3): p. 87-91.
20. Gaya, U.I. and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008. 9(1): p. 1-12.
21. Malato, S., et al., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009. 147(1): p. 1-59.
22. Ho, C.H. and S.L. Lin, Optical properties of the interband transitions of layered gallium sulfide. Journal of Applied Physics, 2006. 100(8): p. 083508.
23. George, P.J., et al., Properties of chemically deposited CdS thin films converted to n-type by indium diffusion. Journal of Crystal Growth, 1996. 158(1): p. 53-60.
24. Li, Q., et al., Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 2011. 133(28): p. 10878-10884.
25. Chen, S., et al., Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 177(2): p. 177-184.
26. Jian, J., et al., A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small, 2015. 11(39): p. 5262-5271.
27. Kandiel, T.A. and K. Takanabe, Solvent-induced deposition of Cu–Ga–In–S nanocrystals onto a titanium dioxide surface for visible-light-driven photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2016. 184: p. 264-269.
28. Qin, L., et al., CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015. 5(14): p. 1500010.
29. Zhao, L., et al., Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene. Nano Letters, 2013. 13(10): p. 4659-4665.
30. Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
31. Mak, K.F., et al., Measurement of the Optical Conductivity of Graphene. Physical Review Letters, 2008. 101(19): p. 196405.
32. Ito, J., J. Nakamura, and A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of Applied Physics, 2008. 103(11): p. 113712.
33. Li, Y., et al., Preparation of Graphene–TiO2 nanotubes/nanofibers composites as an enhanced visible light photocatalyst using a hybrid synthetic strategy. Materials Science in Semiconductor Processing, 2014. 27: p. 695-701.
34. Liu, M., et al., Noble-metal-free photocatalysts MoS(2)-graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H(2) evolution. Chem Commun (Camb), 2014. 50(75): p. 11004-7.
35. Ruan, C., et al., Synthesis of porphyrin sensitized TiO2/graphene and its photocatalytic property under visible light. Materials Letters, 2015. 141: p. 362-365.
36. Al-Nafiey, A., et al., Nickel oxide nanoparticles grafted on reduced graphene oxide (rGO/NiO) as efficient photocatalyst for reduction of nitroaromatics under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017. 336: p. 198-207.
37. Hsieh, S.-H. and J.-M. Ting, Characterization and photocatalytic performance of ternary Cu-doped ZnO/Graphene materials. Applied Surface Science, 2018. 427: p. 465-475.
38. Bard, A.J., et al., Scanning electrochemical microscopy. Introduction and principles. Analytical Chemistry, 1989. 61(2): p. 132-138.
39. Maeda, H., et al., Microscopic Observation of TiO2 Photocatalysis Using Scanning Electrochemical Microscopy. The Journal of Physical Chemistry B, 1999. 103(16): p. 3213-3217.
40. Jaramillo, T.F., et al., Automated Electrochemical Synthesis and Photoelectrochemical Characterization of Zn1-xCoxO Thin Films for Solar Hydrogen Production. Journal of Combinatorial Chemistry, 2005. 7(2): p. 264-271.
41. Merrifield, R.B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society, 1963. 85(14): p. 2149-2154.
42. Nakayama, A., E. Suzuki, and T. Ohmori, Development of high throughput evaluation for photocatalyst thin-film. Applied Surface Science, 2002. 189(3): p. 260-264.
43. Jaramillo Thomas, F., et al., Combinatorial Electrochemical Synthesis and Screening of Mesoporous ZnO for Photocatalysis. Macromolecular Rapid Communications, 2003. 25(1): p. 297-301.
44. Baeck, S.H., et al., Combinatorial Electrochemical Synthesis and Characterization of Tungsten-Based Mixed-Metal Oxides. Journal of Combinatorial Chemistry, 2002. 4(6): p. 563-568.
45. Lettmann, C., H. Hinrichs, and F. Maier Wilhelm, Combinatorial Discovery of New Photocatalysts for Water Purification with Visible Light. Angewandte Chemie International Edition, 2001. 40(17): p. 3160-3164.
46. Leonard, K.C., et al., ZnWO4/WO3 Composite for Improving Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C, 2013. 117(31): p. 15901-15910.
47. Ye, H., H.S. Park, and A.J. Bard, Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C, 2011. 115(25): p. 12464-12470.
48. Hsu, H.-Y., et al., Optimization of PbI2/MAPbI3 Perovskite Composites by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C, 2016. 120(35): p. 19890-19895.
49. Haram, S.K. and A.J. Bard, Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interfaces. The Journal of Physical Chemistry B, 2001. 105(34): p. 8192-8195.
50. Liu, G., C. Liu, and A.J. Bard, Rapid Synthesis and Screening of ZnxCd1−xSySe1−y Photocatalysts by Scanning Electrochemical Microscopy. The Journal of Physical Chemistry C, 2010. 114(49): p. 20997-21002.
51. Lee, J., et al., Screening of Photocatalysts by Scanning Electrochemical Microscopy. Analytical Chemistry, 2008. 80(19): p. 7445-7450.
52. Jang, J.S., et al., Rapid Screening of Effective Dopants for Fe2O3 Photocatalysts with Scanning Electrochemical Microscopy and Investigation of Their Photoelectrochemical Properties. The Journal of Physical Chemistry C, 2009. 113(16): p. 6719-6724.
53. Berglund, S.P., et al., Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Physical Chemistry Chemical Physics, 2013. 15(13): p. 4554-4565.
54. Ye, H., et al., Rapid Screening of BiVO4-Based Photocatalysts by Scanning Electrochemical Microscopy (SECM) and Studies of Their Photoelectrochemical Properties. The Journal of Physical Chemistry C, 2010. 114(31): p. 13322-13328.
55. Bhattacharya, C., H.C. Lee, and A.J. Bard, Rapid Screening by Scanning Electrochemical Microscopy (SECM) of Dopants for Bi2WO6 Improved Photocatalytic Water Oxidation with Zn Doping. The Journal of Physical Chemistry C, 2013. 117(19): p. 9633-9640.
56. Niles, D.W., G. Herdt, and M. Al-Jassim, An x-ray photoelectron spectroscopy investigation of O impurity chemistry in CdS thin films grown by chemical bath deposition. Journal of Applied Physics, 1997. 81(4): p. 1978-1984.
57. Liu, H.-T., et al., L-cysteine-assisted Synthesis of AgInS2 Microspheres. Vol. 26. 2011. 1221-1226.
58. Hota, G., S.B. Idage, and K.C. Khilar, Characterization of nano-sized CdS–Ag2S core-shell nanoparticles using XPS technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 293(1-3): p. 5-12.
59. Pei, X., et al., Structural and photoluminescence properties of SnO2:Ga films deposited on α-Al2O3 (0001) by MOCVD. Vol. 130. 2010. 1189-1193.
60. Chithra, M.J., K. Pushpanathan, and M. Loganathan, Structural and Optical Properties of Co-Doped ZnO Nanoparticles Synthesized by Precipitation Method. Materials and Manufacturing Processes, 2014. 29(7): p. 771-779.
61. Jin, T., et al., Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes. Vol. 28. 2012.


電子全文 電子全文(全文開放日期20230831,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊