(3.227.208.0) 您好!臺灣時間:2021/04/18 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:程宇辰
研究生(外文):CHENG, YU-CHEN
論文名稱:活性碳塗佈於PAN系碳纖維電極之超級電容應用
論文名稱(外文):Application of activated-carbon-coated PAN-based carbon fiber electrode in supercapacitor
指導教授:柯澤豪柯澤豪引用關係
指導教授(外文):KO, TSE-HAO
口試委員:邱國峰呂晃志柯澤豪
口試委員(外文):CHIU, KUO-FENGLEU, HOANG-JYHKO, TSE-HAO
口試日期:2018-06-14
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:95
中文關鍵詞:電雙層超級電容PAN系碳纖維布能量效率
外文關鍵詞:EDLCsPAN-carbon fiber clothenergy efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用碳布取代一般金屬集流體,並且加入活性碳提高比表面積,藉由碳黑的比例調整其電極的導電性,並封裝成完整對稱型超級電容元件進行電性測試,調整出在各個不同電流密度下能量效率最好之參數,由於活性物是利用攪拌混合的方式,在同樣的NMP加入量的情況下,黏度會隨著碳黑比例增加而增加,進而影響均勻度與隨後的塗佈過程,經過調整NMP加入量60倍~90倍與其中能量效率差異比對,發現70倍以上的加入量有較好的表現,並選擇黏度範圍低於2.45 Pa.s為參數的調整條件,循環伏安分析和介面阻抗分析,都能得到隨著碳黑量提升導電度隨之提升,並且提高電極可承受的電流密度大小,電流密度1~3 A/g之間由85CB07達到最好的穩定度和電容量143 F/g,而在電流密度5~7 A/g之間則是由90CB13有最好的穩定性與電容量150 F/g,但經過自放電分析後,75CB04和85CB07在1小時內有較好的電容量維持程度分別為62%和54%,而90CB13在同一個時間內則流失所有電容量,對85CB07和90CB13進行交流阻抗分析,並進行等效電路模擬給予未來參數調整的參考,依據所有分析的比較,本次研究最佳參數為85CB07。
In this research, we change the metal-current-conductor of super-capacitor by PAN-based carbon fiber cloth. Using activated-carbon improves the specific area of electrode, and carbon-black for the conductivity-raising of electrode. Electrical-analysis is conducted under symmetrical full-cell. The parameter of electrode is adjusted by the condition of energy efficiency. Because the slurry of coating is made by blending, the viscosity of slurry will be raised while the NMP content goes down. The ratio of carbon black in slurry also influences the viscosity and uniformity for coating process. The NMP contents are changed from 65 to 90 times of Polyvinylidene fluoride (PVDF) mass for energy efficiency choosing. The 85 times is the best parameter. And the viscosity range is set under 2.45 (Pa.s) based on 70 times for following studies. The change of conductivity and current-tolerance of electrodes can be observed from the ICR and CV analysis. In GCD analysis, the 85CB07 is stable and has 143(F/g) of the capacitance in 1A/g and 3A/g current density. In 5A/g and 7A/g, the 90CB13 is more stable because the higher conductivity value and has the highest capacitance 150(F/g). The 75CB04 and 85CB07 have the better energy retention since the ions diffusion effect. The 85CB07 and 90CB13 are also analyzed by EIS. The equivalent circuit is simulated as reference for understanding difference of parameter and future application. According all analysis and purpose of application, the 85CB07 is the best parameter in this study.
中文摘要 I
ABSTRACT II
總目錄 III
圖目錄 V
表目錄 VII
第一章、緒論與研究動機 1
1.1前言 1
1.2 電容器介紹 4
1.2.1 傳統電容器 4
1.2.2 超級電容 4
1.3 碳材料於超級電容的應用 7
第二章、理論說明與文獻整理 9
2.1 碳材料 9
2.1.1 碳化工程 9
2.1.2 碳纖維 9
2.1.3 活化工程 14
2.1.4 碳材料之導電性 15
2.2 吸附理論 16
2.2.1 影響吸附能力之因素 17
2.2.2 Langmuir等溫吸附 18
2.2.3 BET等溫吸附 19
2.2.4 Isotherm等溫曲線 20
2.2.5 t-plot分析法 24
2.3 電雙層基本觀念 24
2.3.1 Helmholtz 電雙層模型 25
2.3.2 Gouy-Chapman 電雙層模型 26
2.3.4 Stern電雙層模型 27
2.3.5 BDM電雙層模型 27
2.4 交流阻抗分析 30
2.4.1 交流阻抗原理 30
2.4.2 擴散組抗 34
2.5超級電容之電容量測定 35
第三章、實驗方法與鑑定分析 37
3.1 實驗材料與設備 37
3.1.1 實驗材料 37
3.1.2 實驗設備 38
3.2實驗方法 39
3.2.1 電極製備 39
3.2.2超級電容製備 40
3.3 電極材料分析 43
3.3.1 重量分析 43
3.3.2 厚度分析 43
3.3.3 黏度分析 43
3.3.4介面接觸阻抗量測 44
3.3.5比表面積測試與孔徑分析 45
3.3.6掃描式電子顯微鏡 45
3.4 電性分析 46
3.4.1 恆流充放電分析 46
3.4.2 循環伏安分析 47
3.4.3 自放電分析 48
3.4.4 交流阻抗分析 49
第四章、結果與討論 50
4.1 活性碳比表面積與孔徑分佈 50
4.2 活性物黏度分析 50
4.2.1黏度與厚度影響分析 50
4.2.3塗佈速度與塗佈重量影響分析 53
4.3 電極特性分析 53
4.3.1 碳電極接觸電阻 53
4.3.2 表面形貌 56
4.4 電化學分析 61
4.4.1恆電流充放電 61
4.4.2 循環伏安分析 70
4.4.3自放電分析 75
4.4.4 交流阻抗分析 79
第五章、結論 82
參考文獻 84


1.經濟部能源局. 重大政策. Available from: http://www.moeaboe.gov.tw/ECW/populace/news/News.aspx?kind=2&menu_id=56.
2.Christen, T. and M.W. Carlen, Theory of Ragone plots. Journal of power sources, 2000. 91(2): p. 210-216.
3.Pandolfo, A. and A. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of power sources, 2006. 157(1): p. 11-27.
4.Endo, M., et al., High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons. Carbon letters, 2001. 1(3_4): p. 117-128.
5.Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107.
6.Fujishige, M., et al., Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material. Journal of Environmental Chemical Engineering, 2017. 5(2): p. 1801-1808.
7.Yoo, Y.-E., J. Park, and W. Kim, Understanding and controlling the rest potential of carbon nanotube-based supercapacitors for energy density enhancement. Applied Surface Science, 2018. 433(Supplement C): p. 765-771.
8.Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614.
9.Fang, Q., et al., Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors. Journal of The Electrochemical Society, 2001. 148(8): p. A833-A837.
10.Zhang, L.L., et al., Manganese oxide–carbon composite as supercapacitor electrode materials. Microporous and Mesoporous Materials, 2009. 123(1-3): p. 260-267.
11.Xue, Y., et al., A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes. Materials letters, 2008. 62(23): p. 3884-3886.
12.Prasad, K.R. and N. Miura, Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode. Applied physics letters, 2004. 85(18): p. 4199-4201.
13.Randin, J.P. and E. Yeager, Differential capacitance study of stress‐annealed pyrolytic graphite electrodes. Journal of the Electrochemical Society, 1971. 118(5): p. 711-714.
14.Pang, L., et al., One-step synthesis of high-performance porous carbon from corn starch for supercapacitor. Materials Letters, 2016. 184: p. 88-91.
15.Lobato, B., et al., Capacitance and surface of carbons in supercapacitors. Carbon, 2017. 122: p. 434-445.
16.Donnet, J.-B., E. Fitzer, and K.-H. Köchling, Editorial section international committee for characterization and terminology of carbon—first publication of five further tentative definitions. 1987, Pergamon.
17.Bahl, O. and L. Manocha, Characterization of oxidised pan fibres. Carbon, 1974. 12(4): p. 417-423.
18.許明發, 複合材料入門. 2005: 中華民國尖端材料科技協會.
19.Köchling, K., et al., International committee for characterization and terminology of carbon “first publication of 30 tentative definitions”. Carbon, 1982. 20: p. 445-449.
20.Inagaki, M., New carbons-control of structure and functions. 2000: Elsevier.
21.Rahaman, M.S.A., A.F. Ismail, and A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-1432.
22.University, C.M. Carbon nanostructures from polyacrylonitrile copolymer precursors 2017; Available from: https://www.cmu.edu/maty/materials/Nanostructured-materials/carbon-nanostructures.html.
23.P.J. Goodheu, A.J.C., J.E. Bailey,, Materials Science and Engineering,. 1975: p. 3.
24.Suzuki, M., Adsorption engineering. 1990: Kodansha.
25.Kadlec, O., A. Varhanikova, and A. Zukal, Structure of pores of active carbons prepared by water-vapour and zinc-dichloride activation. Carbon, 1970. 8(3): p. 321-331.
26.McKee, D., The copper-catalyzed oxidation of graphite. Carbon, 1970. 8(2): p. 131IN3137-136IN8139.
27.Frackowiak, E. and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950.
28.賴耿陽, 碳材料化學與工學. 2001: 復漢出版社有限公司.
29.Satterfield, C.N., Heterogeneous catalysis in practice. 1980: McGraw-Hill Companies.
30.Cheremisinoff, P.N. and F. Ellerbusch, Carbon adsorption handbook. 1978: Ann Arbor Science Publishers.
31.Figueiredo, J., et al., Modification of the surface chemistry of activated carbons. carbon, 1999. 37(9): p. 1379-1389.
32.Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 1918. 40(9): p. 1361-1403.
33.Gregg, S.J., K.S.W. Sing, and H. Salzberg, Adsorption surface area and porosity. Journal of The Electrochemical Society, 1967. 114(11): p. 279C-279C.
34.Sing, K.S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 1985. 57(4): p. 603-619.
35.Lippens, B., B. Linsen, and J. De Boer, Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis, 1964. 3(1): p. 32-37.
36.Galarneau, A., et al., Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir, 2014. 30(44): p. 13266-13274.
37.Bagotsky, V.S., Fundamentals of electrochemistry. Vol. 44. 2005: John Wiley & Sons.
38.Zhang, L.L. and X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531.
39.Srinivasan, S., Fuel cells: from fundamentals to applications. 2006: Springer Science & Business media.
40.González, A., et al., Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
41.Zhang, Q., et al., The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy & Environmental Science, 2011. 4(6): p. 2152-2159.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔