跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/09 18:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范嫚婷
研究生(外文):FAN, MAN-TING
論文名稱:使用不同閘極電壓與脈衝處理來縮減負電容鰭式電晶體在變換特性時的遲滯效應
論文名稱(外文):Using Different Gate Voltage and Pulse Treatment to Reduce Hysteresis of Transfer Characteristic in Negative Capacitance FinFETs
指導教授:蔡健益
指導教授(外文):TSAY, CHIEN-YIE
口試委員:蔡健益李愷信藍彥文王致傑
口試委員(外文):TSAY, CHIEN-YIELI, KAI-SHINLAN, YANN-WENWANG, CHIH-CHIEH
口試日期:2018-06-22
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:鐵電材料負電容效應二氧化鉿二氧化鋯鉿鰭式場效電晶體
外文關鍵詞:Ferroelectric materialsNegative capacitance(NC)HfO2HfZrO2FinFETs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著摩爾定律(Moore’s Law)的演進,半導體元件的尺寸越做越小,開始面臨許多物理限制,如短通道效應(Short Channel Effects, SCEs)、載子遷移率低、低功耗操作需求等,因此High-K Metal Gate、鰭式場效電晶體的出現來克服這些問題。近年來在物聯網(Internet of Things, IoT)、人工智慧(Artificial Intelligence, AI)、大數據(Big Data)逐漸蓬勃的發展下,當大量的裝置整合在一起時,低功耗元件的需求是迫切的,科學家們透過負電容(Negative Capacitance, NC)效應來放大元件電壓,使得電晶體可以在較小的操作電壓下啟動元件以達到降低功耗的目的。

本研究首先製備出金屬-鐵電-金屬(Metal-Ferroelectric-Metal)的鐵電電容結構,對此電容之鐵電特性進行探討。第二部分將鐵電電容與鰭式場效電晶體(Fin Field Effect Transistors, FinFETs)做結合,研究與分析鐵電電容中的負電容對電晶體電性性質的影響,且利用閘極電壓與脈衝處理的方法來改善鐵電材料必定伴隨的遲滯問題。負電容的應用可以使元件次臨界斜率(Subthreshold Swing, S.S.)從約70 mV / decade下降到接近10 mV / decade,打破了傳統的熱物理極限(60 mV / decade),達到了電壓放大效應。使用不同的閘極電壓和脈衝處理可以控制鐵電材料電疇(Domain)中不同方向的偶極子沿著相同的方向排列,讓鐵電遲滯曲線的明顯縮小(ΔV接近0.03V),獲得小遲滯曲線的鐵電負電容鰭式場效電晶體。
Physical limits such as short channel effects (SCEs), degradation of carrier mobility and reduced power consumption began hindering the obedience of Moore’s Law while devices scaling. Therefore, the appearance of High-K Metal Gate and Fin Field Effect Transistors has overcome these problems. In recent years, the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data have gradually developed. The low power devices are necessary when a large number of devices are integrated. Scientists amplify component voltages through the Negative Capacitance (NC) effect. This allows the transistor to activate the component at a lower operating voltage for the purpose of reducing power consumption.

In this study, the first part, we fabricated a ferroelectric capacitor structure of Metal-Ferroelectric-Metal. The ferroelectric characteristics of this capacitor were discussed. The second part combines the ferroelectric negative capacitance with fin field-effect transistors (FinFETs) to study and analyze the influence of the negative capacitance on the electrical properties of the transistor. Besides, we use gate voltage and pulse treatment to improve the hysteresis that must be associated with ferroelectric materials.

Negative capacitance (NC) through the ferroelectric effect amplifies the effective gate voltage, and transistors can thus be turned on with a smaller gate voltage applied, achieving low power consumption (S.S. < 60 mV/decade). Inevitable hysteresis in ferroelectric materials based NC FETs is however undesirable during FETs operation. In this study, HfZrO2 films act as the ferroelectric material. In order to improve our device performances, we apply different gate voltage and pulse, inducing dipole alignment in HfZrO2 films. Hysteresis curves are thus significantly reduced with ΔV approaching 0.03 V in our devices. We believe that this demonstration is insightful for the progress of ferroelectric NC transistors.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 半導體元件的微縮 1
1.2 半導體元件的背景 3
1.2.1 場效電晶體 3
1.2.2 場效電晶體結構的演變 4
1.2.3 鰭式場效電晶體 6
1.2.4 電晶體之操作原理 7
第二章 鐵電負電容 9
2.1 動機 9
2.2 鐵電材料的介紹 12
2.2.1 鐵電材料 12
2.2.2二氧化鉿及二氧化鉿鋯 15
2.3 負電容機制 17
2.4 Wake-up effect 20
第三章 實驗方法與步驟 22
3.1 半導體製程介紹 22
3.1.1 濕式蝕刻製程 22
3.1.2 離子佈植技術 22
3.1.3 退火製程 23
3.1.4原子層沉積系統 23
3.1.5 金屬化製程 26
3.1.6 微影製程 26
3.1.7 電漿(乾式)蝕刻 27
3.2 元件製程步驟 28
3.2.1 實驗儀器 28
3.2.2原子層沉積之鍍率檢測 30
3.2.3 鐵電MIM結構 31
3.2.4 NC-FinFET結構 34
3.3 元件電性質量測 36
3.3.1 開關電流比 (Ion/Ioff ratio) 36
3.3.2 臨界電壓 (Threshold voltage, VT) 36
3.3.3 施予不同閘極電壓 37
3.3.4 施予脈衝處理 38
3.4 元件檢測與分析 39
3.4.1 晶體結構分析 39
3.4.2 微結構表面觀察 39
3.4.3 微結構剖面觀察 40
第四章 元件量測結果與討論 41
4.1 HfZrO2與HfO2元件之TEM 41
4.2 HfO2的溫度對電容值、極化值、晶體結構之分析 43
4.3 HfZrO2的溫度對電容值、極化值、晶體結構之分析 49
4.4 FinFET與NC-FinFET 54
4.5 施予量測處理以縮減遲滯效應 55
4.5.1 施予不同閘極電壓改變遲滯效應 55
4.5.2 施予脈衝處理改變遲滯效應 58
第五章 結論 61
參考文獻 62
[1]TIME Magazine, “The Year Man Becomes Immortal,” 2011.
[2]M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten, Original data up to the year 2010 collected and plotted; K. Rupp, New plot and data collected for 2010-2017, 2017.
[3]M. M. Waldrop, “More than Moore,” Nature, Vol. 530, pp. 144-147, 2016.
[4]M. Bohr, and K. Mistry, Intel’s revolutionary 22 nm transistor technology, Intel website, 2011.
[5]H. M. Fahad and M. M. Hussain “Are Nanotube Architectures More Advantageous Than Nanowire Architectures For Field Effect Transistors?” Sci. Rep. Vol. 2, p. 475, 2012.
[6]M. Bohr, The Evolution of Scaling from Homogeneous Era to the Heterogeneous Era. IEEE Int. Elect. Dev. Meet.1.1, pp. 1-6, 2011.
[7]C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, “A comparative study of advanced MOSFET concepts,” IEEE Trans. Electron Devices, Vol. 43, No. 10, pp. 1742-1753, 1996.
[8]Y-K Choi, K. Asano, N. Lindert, V. Subramanian, T-J King, J. Bokor, C. Hu, “Ultrathin-Body SOI MOSFET for Deep-Sub-Tenth Micron Era,” IEEE Electron Device Lett., Vol. 21, No. 5, pp. 254-255, 2000.
[9]Y-K Choi, D. Ha, T-J King, and C. Hu, “Ultra-Thin Body PMOSFETs with Selectively Deposited Ge Source/Drain,” VLSI Symposium Dig Of Tech. Papers, pp. 1-20, 2001.
[10]F. L. Yang, H. Y. Chen, F. C. Chen, C. C. Huang, C. Y. Chang, H. K. Chiu and C. Hu, “25-nm CMOS omega FETs,” in IEDM Tech. Dig., pp. 255-258, 2002.

[11]A. Sachid, C. Hu, Denser and more stable FinFET SRAM using multiple fin heights, International Semiconductor Device Research Symposium (ISDRS), pp. 1-2, 2011.
[12]C. Hu, “The Path of FinFET Manufacturing,” Future. Fab Int., Vol. 23, 2007.
[13]J. Treger, “A Peek at the Future-Intel’s Technology Roadmap,” Available: http://www.intel.com/content/www/us/en/it-managers/peek-at-the-future-rick-white-presentation.html.
[14]R. Chau, B. Doyle, S. Datta, J. Kavalieros and K. Zhang, “Integrated nanoelectronics for the future,” Nature Mater., Vol. 6, pp. 810-812, 2007.
[15]A. I. Khan, “Negative capacitance in a ferroelectric capacitor,” Nature Mater., Vol. 14, pp. 182-186, 2015.
[16]A. Facchetti, “Semiconductors for organic transistors,” Mater. Today, Vol. 10, No. 3, pp. 28-37, 2007.
[17]B. G. Streetman, Solid-State Electron., 4th ed., Prentice Hall New Jersey, 1995.
[18]J. Zaumseil, and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors,” Chem. Rev., Vol. 107, No. 4, pp. 1296-1323, 2007.
[19]A. D. Franklin, “Nanomaterials in transistors:From high-performance to thin-film applications,” Science, Vol. 349, No. 6249, p. 704, 2015.
[20]IRDS, More Moore white paper, 2016.
[21]劉雲浩編, 物聯網導論, 北京:科學出版社, 2010.
[22]C. Gustau, J. David, and G. Alexei, “Negative capacitance detected,” Nature Mater., Vol. 14, pp. 137-139, 2015.
[23]W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., Vol. 28, No. 8, pp. 743-745, 2007.
[24]E. Ko, H. Lee, J. D. Park, and C. Shin, “Vertical tunnel FET: design optimization with triple metal-gate layers,” IEEE Trans. on Electron Devices, Vol. 63, No. 12, pp. 5030-5035, 2016.
[25]M. Si, “Steep Slope MoS2 2D Transistors: Negative Capacitance and Negative Differential Resistance,” Nature Nanotech., Vol. 13, No. 1, pp. 24-28, 2017.
[26]F. McGuire, “Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors,” Nano Lett., Vol. 17, No. 8, pp. 4801-4806, 2017.
[27]A. I. Khan, K. Chatterjee, J. P. Duarte, Z. Lu, A. Sachid, S. Khandelwal, R. Ramesh, C. Hu, and S. Salahuddin, “Negative capacitance in short-channel FinFETs externally connected to an epitaxial ferroelectric capacitor,” IEEE Electron Device Lett., Vol. 37, No. 1, pp. 111-114, 2016.
[28]J. Jo, and C. Shin, “Negative capacitance field effect transistor with hysteresis-free sub-60-mV/decade switching,” IEEE Electron Device Lett., Vol. 37, No. 3, pp. 245-248, 2016.
[29]S. M. Sze, Physics of semiconductor devices, 2nd edition, John Wiley & Sons Inc., 1981.
[30]H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. D. Kim, S. D. Hyun, and C. S. Hwang, “Study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement,” Nanoscale, Vol. 8, No. 3, pp. 1383-1389, 2015.
[31]M. B. Smith, “Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3,” J. AM. Chem. Soc., Vol. 130, No. 22, pp. 6955-6963, 2008.
[32]H. F. Cheng, “Structural and optical properties of laser deposited ferroelectric (Sr0.2Ba0.8)TiO3 thin films,” J. Appl. Phys., Vol. 79, pp. 7965, 1996.
[33]M. H. Lee, “Ferroelectricity of HfZrO2 in Energy Landscape with Surface Potential Gain for Low-Power Steep-Slope Transistors,” IEEE, Vol. 3, No. 4, pp. 377-381, 2015.
[34]M. Johannes, S. B. Tim, S. Uwe, M. Stefan, B. Dennis, B. Ulrich, F. Lothar, and M. Thomas, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett, Vol. 12, pp. 4318-4323, 2012.
[35]J. H. Choi, Y. Mao, and J. P. Chang, “Development of hafnium based high-k materials,” Mater. Sci., Eng., Vol. 72, No. 6, pp. 97-136, 2011.
[36]J. A. Kittl, K. Opsomer, M. Popovici, N. Menou, B. Kaczer, X. P. Wang, C. Adelmann, M. A. Pawlak, K. Tomida, A. Rothschild, B. Govoreanu, R. Degraeve, M. Schaekers, M. Zahid, A. Delabie, J. Meersschaut, W. Polspoel, S. Clima, G. Pourtois, W. Knaepen, C. Detavernier, V. V. Afanas’ev, T. Blomberg, D. Pierreux, J. Swerts, P. Fischer, J. W. Maes, D. Manger, W. Vandervorst, T. Conard, A. Franquet, P. Favia, H. Bender, B. Brijs, S. van Elshocht, M. Jurczak, J. van Houdt, and D. J. Wouters, “High-k dielectrics for future generation memory devices (Invited Paper),” Microelectron. Eng., Vol. 86, No. 7-9, pp. 1789-1795, 2009.
[37]P. Polakowski and J. Muller, “Ferroelectricity in undoped hafnium oxide,” Appl. Phys. Lett., Vol. 106, p. 232905, 2015.
[38]P. Shen and W. H. Lee, “(111)-Specific Coalescence Twinning and Martensitic Transformation of Tetragonal ZrO2 Condensates,” Nano Lett., Vol. 1, No. 12, pp. 707-711, 2001.
[39]S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay and Z. Rahman, “Effect of Nanocrystallite Morphology on the Metastable Tetragonal Phase Stabilization in Zirconia,” Nano Lett., Vol. 2, No. 9, pp. 989-993, 2002.
[40]A. Navrotsky, “Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations,” J. Mater. Chem., Vol. 15, pp. 1883-1890, 2005.
[41]X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Phys. Rev., Vol. 65, No. 23, p. 233106, 2002.
[42]X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, Vol. 65, No. 7, p. 075105 , 2002.
[43]S. K. Kim, and C. S. Hwang, “Atomic Layer Deposition of ZrO2 Thin Films with High Dielectric Constant on TiN Substrates,” Electrochem. Solid-State Lett., Vol. 11, No. 3, pp. 9-11, 2008.
[44]T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett. , Vol. 99, No. 10, p. 102903, 2011.
[45]T. S. Boscke, S. Teichert, D. Brauhaus, J. Muller, U. Schroder, U. Bottger, and T. Mikolajick, “Phase transitions in ferroelectric silicon doped hafnium oxide,” Appl. Phys. Lett., Vol. 99, No. 11, p. 112904, 2011.
[46]J. Muller, T. S. Boscke, D. Brauhaus, U. Schroder, U. Bottger, J. Sundqvist, P. Kucher, and T. Mikolajick, Frey, L. Appl. Phys. Lett., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Vol. 99, No. 11, p. 112901, 2011.
[47]S. Muller, J. Muller, A. Singh, S. Riedel, J. Sundqvist, U. Schroder, and T. Mikolajick, “Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films,” Adv. Funct. Mater., Vol. 22, No. 11, pp. 2412-2417, 2012.
[48]J. Muller, T. S. Boscke, D. Brauhaus, U. Schroder, U. Bottger, J. Sundqvist, P. Kucher, and T. Mikolajick, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Frey, L. Appl. Phys. Lett., Vol. 99, No. 11 , p. 112901, 2011.
[49]Y. C. Lin, F. McGuire and A. D. Franklin, “Realizing ferroelectric Hf0.5Zr0.5O2 with elemental capping layers,” J. Vac. Sci. Technol. Vol. 36, No. 1, p. 011204, 2018.
[50]A. I. Khan, “Negative capacitance in a ferroelectric capacitor,” Nature Mater., Vol. 14, pp. 182-186, 2015.
[51]S. Salahuddin, and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Lett, Vol. 8, No. 2, pp. 405-410, 2008.
[52]M. Pesic, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Adv. Funct. Mater., Vol. 26, No. 25, pp. 4601-4612, 2016.
[53]英作奈米科技, http://www.ennano.com/atomic.php?id=29.
[54]J. Robertson, and J. Vac., “Band offsets of wide-band-gap oxides and implications for future electronic devices,” Sci. Technol, Vol. 18, No. 3, pp. 1785-1791, 2000.
[55]C. Rost-Bietsch, “Ambipolar and light-emitting organic field-effect transistor,” Appl. Phys. Lett., Vol. 85, No. 9, pp. 1613-1615, 2004.
[56]林麗娟, “X光繞射原理及其應用”工業材料86期, 1994.
[57]S. K. Sharma, S. N. Dolia, R. Kimar, M. knobel, V. V. S. Kumar, M. Singh, “Magnetic study of nanoparticales of Mg0.95Mn0.05Fe2O4 spinel ferrite,” Indian J Pure & Appl Phys, Vol. 44, pp. 771-773, 2006.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top