|
[1]TIME Magazine, “The Year Man Becomes Immortal,” 2011. [2]M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten, Original data up to the year 2010 collected and plotted; K. Rupp, New plot and data collected for 2010-2017, 2017. [3]M. M. Waldrop, “More than Moore,” Nature, Vol. 530, pp. 144-147, 2016. [4]M. Bohr, and K. Mistry, Intel’s revolutionary 22 nm transistor technology, Intel website, 2011. [5]H. M. Fahad and M. M. Hussain “Are Nanotube Architectures More Advantageous Than Nanowire Architectures For Field Effect Transistors?” Sci. Rep. Vol. 2, p. 475, 2012. [6]M. Bohr, The Evolution of Scaling from Homogeneous Era to the Heterogeneous Era. IEEE Int. Elect. Dev. Meet.1.1, pp. 1-6, 2011. [7]C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, “A comparative study of advanced MOSFET concepts,” IEEE Trans. Electron Devices, Vol. 43, No. 10, pp. 1742-1753, 1996. [8]Y-K Choi, K. Asano, N. Lindert, V. Subramanian, T-J King, J. Bokor, C. Hu, “Ultrathin-Body SOI MOSFET for Deep-Sub-Tenth Micron Era,” IEEE Electron Device Lett., Vol. 21, No. 5, pp. 254-255, 2000. [9]Y-K Choi, D. Ha, T-J King, and C. Hu, “Ultra-Thin Body PMOSFETs with Selectively Deposited Ge Source/Drain,” VLSI Symposium Dig Of Tech. Papers, pp. 1-20, 2001. [10]F. L. Yang, H. Y. Chen, F. C. Chen, C. C. Huang, C. Y. Chang, H. K. Chiu and C. Hu, “25-nm CMOS omega FETs,” in IEDM Tech. Dig., pp. 255-258, 2002.
[11]A. Sachid, C. Hu, Denser and more stable FinFET SRAM using multiple fin heights, International Semiconductor Device Research Symposium (ISDRS), pp. 1-2, 2011. [12]C. Hu, “The Path of FinFET Manufacturing,” Future. Fab Int., Vol. 23, 2007. [13]J. Treger, “A Peek at the Future-Intel’s Technology Roadmap,” Available: http://www.intel.com/content/www/us/en/it-managers/peek-at-the-future-rick-white-presentation.html. [14]R. Chau, B. Doyle, S. Datta, J. Kavalieros and K. Zhang, “Integrated nanoelectronics for the future,” Nature Mater., Vol. 6, pp. 810-812, 2007. [15]A. I. Khan, “Negative capacitance in a ferroelectric capacitor,” Nature Mater., Vol. 14, pp. 182-186, 2015. [16]A. Facchetti, “Semiconductors for organic transistors,” Mater. Today, Vol. 10, No. 3, pp. 28-37, 2007. [17]B. G. Streetman, Solid-State Electron., 4th ed., Prentice Hall New Jersey, 1995. [18]J. Zaumseil, and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors,” Chem. Rev., Vol. 107, No. 4, pp. 1296-1323, 2007. [19]A. D. Franklin, “Nanomaterials in transistors:From high-performance to thin-film applications,” Science, Vol. 349, No. 6249, p. 704, 2015. [20]IRDS, More Moore white paper, 2016. [21]劉雲浩編, 物聯網導論, 北京:科學出版社, 2010. [22]C. Gustau, J. David, and G. Alexei, “Negative capacitance detected,” Nature Mater., Vol. 14, pp. 137-139, 2015. [23]W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., Vol. 28, No. 8, pp. 743-745, 2007. [24]E. Ko, H. Lee, J. D. Park, and C. Shin, “Vertical tunnel FET: design optimization with triple metal-gate layers,” IEEE Trans. on Electron Devices, Vol. 63, No. 12, pp. 5030-5035, 2016. [25]M. Si, “Steep Slope MoS2 2D Transistors: Negative Capacitance and Negative Differential Resistance,” Nature Nanotech., Vol. 13, No. 1, pp. 24-28, 2017. [26]F. McGuire, “Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors,” Nano Lett., Vol. 17, No. 8, pp. 4801-4806, 2017. [27]A. I. Khan, K. Chatterjee, J. P. Duarte, Z. Lu, A. Sachid, S. Khandelwal, R. Ramesh, C. Hu, and S. Salahuddin, “Negative capacitance in short-channel FinFETs externally connected to an epitaxial ferroelectric capacitor,” IEEE Electron Device Lett., Vol. 37, No. 1, pp. 111-114, 2016. [28]J. Jo, and C. Shin, “Negative capacitance field effect transistor with hysteresis-free sub-60-mV/decade switching,” IEEE Electron Device Lett., Vol. 37, No. 3, pp. 245-248, 2016. [29]S. M. Sze, Physics of semiconductor devices, 2nd edition, John Wiley & Sons Inc., 1981. [30]H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. D. Kim, S. D. Hyun, and C. S. Hwang, “Study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement,” Nanoscale, Vol. 8, No. 3, pp. 1383-1389, 2015. [31]M. B. Smith, “Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3,” J. AM. Chem. Soc., Vol. 130, No. 22, pp. 6955-6963, 2008. [32]H. F. Cheng, “Structural and optical properties of laser deposited ferroelectric (Sr0.2Ba0.8)TiO3 thin films,” J. Appl. Phys., Vol. 79, pp. 7965, 1996. [33]M. H. Lee, “Ferroelectricity of HfZrO2 in Energy Landscape with Surface Potential Gain for Low-Power Steep-Slope Transistors,” IEEE, Vol. 3, No. 4, pp. 377-381, 2015. [34]M. Johannes, S. B. Tim, S. Uwe, M. Stefan, B. Dennis, B. Ulrich, F. Lothar, and M. Thomas, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett, Vol. 12, pp. 4318-4323, 2012. [35]J. H. Choi, Y. Mao, and J. P. Chang, “Development of hafnium based high-k materials,” Mater. Sci., Eng., Vol. 72, No. 6, pp. 97-136, 2011. [36]J. A. Kittl, K. Opsomer, M. Popovici, N. Menou, B. Kaczer, X. P. Wang, C. Adelmann, M. A. Pawlak, K. Tomida, A. Rothschild, B. Govoreanu, R. Degraeve, M. Schaekers, M. Zahid, A. Delabie, J. Meersschaut, W. Polspoel, S. Clima, G. Pourtois, W. Knaepen, C. Detavernier, V. V. Afanas’ev, T. Blomberg, D. Pierreux, J. Swerts, P. Fischer, J. W. Maes, D. Manger, W. Vandervorst, T. Conard, A. Franquet, P. Favia, H. Bender, B. Brijs, S. van Elshocht, M. Jurczak, J. van Houdt, and D. J. Wouters, “High-k dielectrics for future generation memory devices (Invited Paper),” Microelectron. Eng., Vol. 86, No. 7-9, pp. 1789-1795, 2009. [37]P. Polakowski and J. Muller, “Ferroelectricity in undoped hafnium oxide,” Appl. Phys. Lett., Vol. 106, p. 232905, 2015. [38]P. Shen and W. H. Lee, “(111)-Specific Coalescence Twinning and Martensitic Transformation of Tetragonal ZrO2 Condensates,” Nano Lett., Vol. 1, No. 12, pp. 707-711, 2001. [39]S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay and Z. Rahman, “Effect of Nanocrystallite Morphology on the Metastable Tetragonal Phase Stabilization in Zirconia,” Nano Lett., Vol. 2, No. 9, pp. 989-993, 2002. [40]A. Navrotsky, “Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations,” J. Mater. Chem., Vol. 15, pp. 1883-1890, 2005. [41]X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Phys. Rev., Vol. 65, No. 23, p. 233106, 2002. [42]X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, Vol. 65, No. 7, p. 075105 , 2002. [43]S. K. Kim, and C. S. Hwang, “Atomic Layer Deposition of ZrO2 Thin Films with High Dielectric Constant on TiN Substrates,” Electrochem. Solid-State Lett., Vol. 11, No. 3, pp. 9-11, 2008. [44]T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett. , Vol. 99, No. 10, p. 102903, 2011. [45]T. S. Boscke, S. Teichert, D. Brauhaus, J. Muller, U. Schroder, U. Bottger, and T. Mikolajick, “Phase transitions in ferroelectric silicon doped hafnium oxide,” Appl. Phys. Lett., Vol. 99, No. 11, p. 112904, 2011. [46]J. Muller, T. S. Boscke, D. Brauhaus, U. Schroder, U. Bottger, J. Sundqvist, P. Kucher, and T. Mikolajick, Frey, L. Appl. Phys. Lett., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Vol. 99, No. 11, p. 112901, 2011. [47]S. Muller, J. Muller, A. Singh, S. Riedel, J. Sundqvist, U. Schroder, and T. Mikolajick, “Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films,” Adv. Funct. Mater., Vol. 22, No. 11, pp. 2412-2417, 2012. [48]J. Muller, T. S. Boscke, D. Brauhaus, U. Schroder, U. Bottger, J. Sundqvist, P. Kucher, and T. Mikolajick, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Frey, L. Appl. Phys. Lett., Vol. 99, No. 11 , p. 112901, 2011. [49]Y. C. Lin, F. McGuire and A. D. Franklin, “Realizing ferroelectric Hf0.5Zr0.5O2 with elemental capping layers,” J. Vac. Sci. Technol. Vol. 36, No. 1, p. 011204, 2018. [50]A. I. Khan, “Negative capacitance in a ferroelectric capacitor,” Nature Mater., Vol. 14, pp. 182-186, 2015. [51]S. Salahuddin, and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Lett, Vol. 8, No. 2, pp. 405-410, 2008. [52]M. Pesic, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Adv. Funct. Mater., Vol. 26, No. 25, pp. 4601-4612, 2016. [53]英作奈米科技, http://www.ennano.com/atomic.php?id=29. [54]J. Robertson, and J. Vac., “Band offsets of wide-band-gap oxides and implications for future electronic devices,” Sci. Technol, Vol. 18, No. 3, pp. 1785-1791, 2000. [55]C. Rost-Bietsch, “Ambipolar and light-emitting organic field-effect transistor,” Appl. Phys. Lett., Vol. 85, No. 9, pp. 1613-1615, 2004. [56]林麗娟, “X光繞射原理及其應用”工業材料86期, 1994. [57]S. K. Sharma, S. N. Dolia, R. Kimar, M. knobel, V. V. S. Kumar, M. Singh, “Magnetic study of nanoparticales of Mg0.95Mn0.05Fe2O4 spinel ferrite,” Indian J Pure & Appl Phys, Vol. 44, pp. 771-773, 2006.
|