跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/08 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邸心緯
研究生(外文):DI,HSIN-WEI
論文名稱:氧化銅與銅奈米異質結構於表面增強拉曼散射與光催化之應用
論文名稱(外文):Copper Oxide and Copper Nano-heterostructures for Surface-Enhanced Raman Scattering and Photocatalytic Applications
指導教授:張育誠張育誠引用關係
指導教授(外文):CHANG,YU-CHENG
口試委員:呂明諺張東浩
口試委員(外文):LU,MING-YENCHANG,TUNG-HAO
口試日期:2018-07-05
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:120
中文關鍵詞:氧化銅奈米異質結構表面增強拉曼散射光催化降解汙染物光催化產生氫氣濕式化學法水熱法
外文關鍵詞:Copper OxideNano-HeterostructuresMolybdenum (IV) DisulfideSurface-Enhanced Raman ScatteringPhotocatalytic DegradationWet Chemical MethodHydrothermal Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文共分為兩個主題,分別是氧化銅奈米異質結構於表面增強拉曼散射之應用與銅與二硫化鉬奈米異質結構於光催化降解汙染物及產氫之應用。
首先,本研究使用直接加熱法於銅片基材上製備氧化銅奈米線,此方法具有多項優點,如低溫、低成本、大規模成長、不需要催化劑及模板與環境友善性。藉由浸泡三甲氧基矽烷增加氧化銅奈米線的表面親水性後,利用濕式化學法包覆碳再析出適當的銀奈米粒子,並探討不同濃度前驅物及不同鍍銀方法對其表面增強拉曼散射效能的影響。最後探討此氧化銅奈米異質結構最佳條件應用於羅丹明 6G 、醫療用抗生素阿莫西林及化療藥物 5-氟脲嘧啶。結果顯示,本研究所製備的氧化銅奈米線/碳/銀異質結構提供簡易、高強度、低偵測極限與低成本製造等優點,對其表面增強拉曼光譜感測系統具有重要的利用價值。
其次,透過水熱法製備銅與二硫化鉬奈米異質結構,其優點為不須高溫燒結、結晶性佳、純度高、成本低且環境影響小。在研究中使用四氫呋喃將銅奈米線均勻分散並與不同濃度的二硫化鉬前驅物進行混合製備銅與二硫化鉬奈米異質結構。在光催化特性部分則是分別針對不同二硫化鉬前驅物濃度所製備的銅與二硫化鉬奈米異質結構於光催化降解羅丹明6G與光催化產氫進行探討。其結果顯示銅與二硫化鉬奈米異質結構相較於市售的二氧化鈦奈米粉末具備有較佳的光催化特性。此銅與二硫化鉬奈米異質結構將可用於太陽能轉換、水分解及其他相關領域。

There are two subjects in this thesis, which are the synthesis and applications of copper oxide nano-heterostructures and copper/molybdenum disulfide nano-heterostructures for surface-enhanced Raman scattering and photocatalytic degradation or photocatalytic hydrogen production, respectively.
First, in this study, copper oxide nanowires have been fabricated by thermal oxidation method on copper substrate. This method has many advantages, such as low temperature, less cost, large-scale growth, no need of catalyst and template, and environmental friendliness. The surface hydrophilicity of copper oxide nanowires can be increased by bonding (3-Aminopropyl)-trimethoxysilane. After then, we used wet chemical method to coat carbon and replace silver nanoparticles on copper oxide nanowire under the different concentration of reaction precursors for evaluating the effect of surface-enhanced Raman scattering spectroscopy. Finally, the optimal condition of the copper oxide nano-heterostructures were further applied to the detection of medical antibiotic amoxicillin and chemotherapy drug 5- Fluorouracil. The copper oxide nano-heterostructures provide simplicity, high enhancement, low detection limit, and low cost fabrication, which shall be of significant value for practical applications of other SERS sensing systems.
Second, copper/molybdenum disulfide nano-heterostructures have been synthesized by hydrothermal method, which exhibited the advantages of not requiring high-temperature sintering, good crystallinity, high purity, low cost, and low environmental impact. The copper nanowires can be uniformly dispersed in tetrahydrofuran, which is beneficial to mix with different concentration of molybdenum disulfide precursor for the growth of copper/molybdenum disulfide nano-heterostructures. The photocatalytic activities of the different concentration of molybdenum disulfide reaction precursors were evaluated in the photocatalytic degradation of rhodamine 6G and hydrogen production under visible light irradiation. The copper/molybdenum disulfide nano-heterostructures revealed much higher photodegradation and hydrogen production efficiency than commercial TiO2 nanopowders. The copper/molybdenum disulfide nano-heterostructures can be used in solar energy conversion, water splitting, and other related applications.

摘 要 I
ABSTRACT II
總目錄 IV
圖目錄 VIII
表目錄 XIV
第一章 緒 論 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 表面增強拉曼光譜簡介 4
2.1.1 散射 4
2.1.2 拉曼散射光譜特性 5
2.1.3 表面增強拉曼光譜發展、原理與應用 8
2.1.3.1 電磁及化學增強效應 9
2.1.3.2 熱點 10
2.2 光催化簡介 11
2.2.1 光催化機制 12
2.2.2 光催化的實驗方法 13
2.2.3 改善光催化效率的方法 14
2.3 產氫簡介 15
2.3.1 氫能源 15
2.3.2 產氫機制 16
2.3.3 氫能源技術 17
2.4 奈米材料簡介 19
2.4.1 奈米材料 20
2.4.2 製備奈米材料的相關技術 21
2.4.3 奈米材料的應用與發展 23
2.5 銅的簡介 24
2.5.1 氧化銅與氧化亞銅 24
2.5.2 氧化銅與氧化亞銅的製程 25
2.5.3 氧化銅與氧化亞銅的應用 27
2.6 碳的簡介 28
2.6.1 碳的特性 29
2.6.2 碳的製程 30
2.6.3 碳的應用 31
2.7 銀 32
2.7.1 銀奈米粒子的特性及應用 32
2.7.2 銀奈米粒子的製程 32
2.7.3 銀奈米粒子於拉曼光譜的應用 34
2.8 其它待測物於表面增強拉曼散射應用 34
2.8.1 羅丹明 6G (Rhodamine 6G, R6G) 34
2.8.2 阿莫西林 (Amoxicillin) 35
2.8.3 5-氟脲嘧啶 (5-Fluorouracil, 5-FU) 35
2.9 二硫化鉬簡介 36
2.9.1二硫化鉬的特性及其應用 36
2.9.2二硫化鉬的製程 37
第三章 實驗步驟與方法 40
3.1 實驗架構 40
3.1.1 氧化銅奈米線上鍍碳與鍍銀 40
3.1.2銅奈米線粉末鍍二硫化鉬 41
3.2 拉曼光譜量測 42
3.3 光催化實驗 42
3.4 產氫實驗 43
3.5 實驗藥品與儀器 44
3.5.1 實驗藥品 44
3.5.2 實驗儀器 45
3.5.3 分析儀器 46
第四章 結果與討論 61
4.1氧化銅奈米異質結構於表面增強拉曼散射之應用 61
4.1.1銅片退火不同測試條件之奈米結構形貌及晶體結構 61
4.1.2氧化銅奈米線之元素組成及化學組態 71
4.1.3氧化銅奈米線上成長異質結構之表面形貌 72
4.1.4 氧化銅奈米異質結構應用於羅丹明 6G 的表面增強拉曼散射光譜 82
4.1.5 氧化銅奈米異質結構應用於阿莫西林的表面增強拉曼散射光譜 93
4.1.6 氧化銅奈米異質結構應用於5-氟脲嘧啶的表面增強拉曼散射光譜 95
4.2銅與二硫化鉬奈米異質結構於光催化降解汙染物及產氫之應用 97
4.2.1銅奈米線分散於不同溶劑之形貌分析 97
4.2.2銅奈米線之元素組成及化學組態 99
4.2.3銅奈米線包覆二硫化鉬之形貌與晶體結構 99
4.2.4銅與二硫化鉬奈米異質結構之元素組成及化學組態 102
4.2.5銅與二硫化鉬奈米異質結構的比表面積分析 103
4.2.6銅與二硫化鉬奈米異質結構之光學性質 104
4.2.7銅與二硫化鉬奈米異質結構於光催化降解汙染物之應用 105
4.2.8銅與二硫化鉬奈米異質結構於光催化產氫之應用 107
第五章 結論 110
5.1氧化銅奈米異質結構於表面增強拉曼散射之應用 110
5.2銅與二硫化鉬奈米異質結構於光催化降解汙染物及產氫之應用 110
第六章 參考文獻 112

1.張敏超.洪仁陽.梁德明.李宗銘, 水處理科技的現在與未來, in 科學發展 第543期. 2018年3月. p. 30-35.
2.林欣瑜, 氫新光綠能─水分解光觸媒技術, in 科學發展 第508期. 20150年4月. p. 18-23.
3.林有銘, 無所不在的環境清潔工奈米光觸媒, in 科學發展 第408期. 2006年12月. p. 24-31.
4.Zhou, P., J. Yu, and Y. Wang, The new understanding on photocatalytic mechanism of visible-light response NS codoped anatase TiO2 by first-principles, in Applied Catalysis B: Environmental. 2013. p. 45-53.
5.黃益勤, 金奈米螺旋與週期溝槽陣列上金奈米顆粒之表面增強拉曼散射探討, in 資源工程研究所. 國立臺北科技大學: 台北市.
6.李其峰, 新穎Cu 氧化物奈米結構之合成、X 光繞射模擬分析及其異質接面光觸媒之應用, in 材料科學與工程學系. 2010, 國立交通大學: 新竹市. p. 86.
7.Han, B., et al., One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light, in Applied Catalysis B: Environmental. 2017. p. 298-304.
8.蘇青森, 儀器學, in 五南圖書出版股份有限公司. 2002.
9.王仕宇, 利用時間解析的表面增強拉曼散射光譜探討CV及R6G在奈米金屬膠體溶液中的吸附動力學, in 應用化學系研究所. 2010, 國立嘉義大學: 嘉義市. p. 116.
10.吳毓純, 探索物質世界的偵察機─光. 2014年4月: 科學發展 第496期. p. 54-59.
11.張煥宗, 黃.李.林.江., 奈米粒子於雷射脫附游離質譜分析與表面增強拉曼散射光譜之應用. 2008年8月: 科儀新知. p. 81-89.
12.Kneipp, K., et al., Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes, in Physical Review Letters. 2000, American Physical Society. p. 3470-3473.
13.張元義, 多成分微粒光學彈性散射與非彈性散射特性之研究, in 工程科技研究所. 2014, 國立臺北科技大學: 台北市. p. 57.
14.Schlücker, S., Surface‐Enhanced Raman Spectroscopy: Concepts and Chemical Applications, in Angewandte Chemie International Edition. 2014. p. 4756-4795.
15.皮亦雄, 施., 拉曼光譜在食品科學上的應用. 2007年4月: 科儀新知. p. 89-96.
16.儀器基本原理講義, in 逢甲大學共用貴重儀器中心.
17.黃炳照, 陳.黃.陳., 拉曼散射之表面訊號增益技術應用. 2012年4月: 科儀新知. p. 11-23.
18.林鼎晸、朱仁佑、張祐嘉、汪天仁、蔡枝松、葉吉田、王俊凱, 表面增強拉曼散射光譜的發展與應用. 2008年9月, 工研院材化所: 材料世界網.
19.Philip, A., B. Ankudze, and T.T. Pakkanen, Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies, in Applied Surface Science. 2018. p. 243-252.
20.Ding, S.-Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy, in Chemical Society Reviews. 2017, The Royal Society of Chemistry. p. 4042-4076.
21.Rodriguez, R.D., et al., Aluminum and copper nanostructures for surface-enhanced Raman spectroscopy: A one-to-one comparison to silver and gold, in Sensors and Actuators B: Chemical. 2018. p. 922-927.
22.Xie, Y., et al., SERS activity of self-cleaning silver/titania nanoarray, in Applied Surface Science. 2014. p. 549-557.
23.Wang, C. and C.X. Yu, Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling, in Nanotechnology. 2015.
24.翁瑞佑, 苯甲酸和對-羥基苯甲酸之表面增加拉曼散射研究, in 光電研究所. 2011, 逢甲大學: 台中市. p. 86.
25.Stranahan, S.M. and K.A. Willets, Super-resolution Optical Imaging of Single-Molecule SERS Hot Spots, in Nano Letters. 2010, American Chemical Society. p. 3777-3784.
26.Su, K.H., et al., Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles, in Nano Letters. 2003, American Chemical Society. p. 1087-1090.
27.Ruan, F., et al., Near-field coupling and SERS effects of palladium nanoparticle dimers, in Chinese Science Bulletin. 2010. p. 2930-2936.
28.Kleinman, S.L., et al., Creating, characterizing, and controlling chemistry with SERS hot spots, in Physical Chemistry Chemical Physics. 2013, The Royal Society of Chemistry. p. 21-36.
29.錢律廷, 微波水熱合成SrTiO3:Rh 光觸媒於光催化水分解反應研究, in 材料科學與工程學系. 2017, 國立東華大學: 花蓮縣. p. 86.
30.楊筌凱, 利用微波輔助水熱法合成層級式溴氧化鉍微米球與光催化降解有機物之應用, in 環境工程與科學學系. 2013, 逢甲大學: 台中市. p. 115.
31.蘇健豪, KNb3O8光觸媒於Z-scheme光催化全水分解反應以及可見光催化抗菌效能之研究, in 材料科學與工程學系. 2013, 國立東華大學: 花蓮縣. p. 81.
32.Hua, T., et al., Nano‐photocatalytic Materials: Possibilities and Challenges, in Advanced Materials. 2012. p. 229-251.
33.Konstantinou, I.K. and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, in Applied Catalysis B: Environmental. 2004. p. 1-14.
34.李中光,劉新校,陳昱峰,吳孟昌,劉佳雯, Fenton氧化法在處理生物難降解有機廢水上之應用, in 環境工程系 萬能科技大學 環保簡訊.
35.Robinson, T., et al., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, in Bioresource Technology. 2001. p. 247-255.
36.林業騫, 銀鉭系波洛斯凱特型與二氧化鈦光觸媒用於二氧化碳光催化還原反應之效能-光觸媒物性和光學性質之鑑定及光催化活性之初步測定, in 化學工程學系碩博士班. 2008, 國立成功大學: 台南市. p. 124.
37.陳亭穆, 摻雜過渡金屬之觸媒在光催化及加氫脫硫反應促進效應之研究, in 化學工程學系. 2010, 國立清華大學: 新竹市. p. 139.
38.李泔涓, 金屬修飾硫化鋅光觸媒之製備及光催化之應用, in 環境工程與科學學系. 2015, 逢甲大學: 台中市. p. 250.
39.Tang, L., et al., Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism, in Applied Catalysis B: Environmental. 2018. p. 102-114.
40.Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, in Nature. 1972, Nature Publishing Group. p. 37.
41.Ashokkumar, M., An overview on semiconductor particulate systems for photoproduction of hydrogen, in International Journal of Hydrogen Energy. 1998. p. 427-438.
42.Grochala, W. and P.P. Edwards, Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen, in Chemical Reviews. 2004, American Chemical Society. p. 1283-1316.
43.蘇明德, 氫的自述, in 科學發展 第532期. 2017年4月. p. 54-65.
44.董昀昌, 產氫光合作用細菌利用厭氧產氫程序放流水的產氫能力研究, in 環境工程學系. 2001, 國立中興大學: 台中市. p. 118.
45.Das, D. and T.N. Veziroǧlu, Hydrogen production by biological processes: a survey of literature, in International Journal of Hydrogen Energy. 2001. p. 13-28.
46.賈普, 有基海綿吸附高密度二氧化鈦之光 催化裂解水產氫研究, in 材料科學工程學系. 2017, 國立清華大學: 新竹市. p. 68.
47.Chen, X., et al., Semiconductor-based Photocatalytic Hydrogen Generation, in Chemical Reviews. 2010, American Chemical Society. p. 6503-6570.
48.Yan, H., et al., Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst, in Journal of Catalysis. 2009. p. 165-168.
49.林育辰, 結合二碲化鈷與二氧化鈦保護層之矽微米柱異質結構應用於光催化水分解, in 物理學系. 2017, 國立臺灣師範大學: 台北市. p. 69.
50.徐維廷, 纖維水解菌群中嗜熱產氫菌Clostridiumsp.C4之分離及其產氫特性研究, in 環境科學與工程學系. 2007, 東海大學: 台中市. p. 138.
51.郭桓辰, 利用超音波照射產氫菌以提升生質能產氫效率之研究, in 機械與機電工程學系研究所. 2012, 國立中山大學: 高雄市. p. 113.
52.Ye, F., et al., Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution, in Applied Surface Science. 2017. p. 177-184.
53.Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, in Renewable and Sustainable Energy Reviews. 2007. p. 401-425.
54.陳冠宇, 添加犧牲試劑對於太陽光激發光催化進行水中Cr(VI)之處理, in 環境工程與科學系曁研究所. 2009, 嘉南藥理科技大學: 台南市. p. 90.
55.Bao, N., et al., Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light, in Chemistry of Materials. 2008, American Chemical Society. p. 110-117.
56.Maeda, K., et al., Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal, in Journal of Catalysis. 2006. p. 303-308.
57.曾耀弘, 銀鈀合金奈米粒子的製備與金奈米粒子的表面修飾, in 化學系碩博士班. 2002, 國立成功大學: 台南市. p. 103.
58.葉安義, 奈米科技與食品. 2004年12月: 科學發展 第384期. p. 44-49.
59.龔柏諺, 銀奈米粒子的表面電漿子共振協助螢光能量共振轉移在光化學分解水, in 材料科學與工程學系. 2014, 國立東華大學: 花蓮縣. p. 103.
60.李琦峰, 超順磁奈米粒子的表面電荷於DNA分離上的應用與α-Fe2O3奈米粒子之製備, in 化學系碩博士班. 2005, 國立成功大學: 台南市. p. 68.
61.林彥谷, 奈米結構捕捉太陽光分解水製氫. 2015年4月: 科學發展 第508期. p. 24-27.
62.張立德、張勁燕, 奈米材料. 2002年: 五南圖書出版公司.
63.陳書偉, 奈米複合材料混練與奈微米成型之研究, in 機械系碩士班. 2006, 龍華科技大學: 桃園縣. p. 101.
64.尹邦躍、張勁燕, nano奈米時代. 2002年: 五南圖書出版公司.
65.羅夢凡, 奈米金觸媒的尺寸效應. 2014年111月: 科學發展 第503期. p. 58-62.
66.吳碩脩, 鋁摻雜之氧化鋅奈米針陣列於表面增強拉曼光譜與光催化之應用, in 材料科學與工程學系. 2017, 逢甲大學: 台中市. p. 189.
67.張立德、牟季美、葉瑞明, 奈米材料和奈米結構. 2002年: 滄海書局.
68.吳思翰, 金屬及金屬核殼型複合奈米粒子之製備, in 化學工程學系碩博士班. 2004, 國立成功大學: 台南市. p. 149.
69.楊庭維, 以熱裂解法製備二氧化錫奈米粒子及鉑/二氧化錫奈米粒子並應用於氣體感測上之研究, in 機械工程系. 2012, 南台科技大學: 台南市. p. 102.
70.羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕, 奈米科技導埨. 2008年: 全華圖書出版公司.
71.王玟, 奈米化學與科技應用. 2004年: 工業技術研究院化工所.
72.蔡銘維, 楊., 一維奈米技術. 2012年3月: 科學發展 第471期. p. 62-71.
73.吳明立, 微乳化系統製備雙金屬奈米粒子之研究, in 化學工程學系. 2001, 國立成功大學: 台南市. p. 125.
74.江建鋒, 氧化銅奈米顆粒反鐵磁與鐵磁耦合研究, in 物理學系. 2014, 國立中央大學: 桃園縣. p. 99.
75.陳廷瑋, 銅與氧化銅奈米顆粒複合系統自旋極化參數探討, in 物理學系. 2014, 國立中央大學: 桃園縣. p. 82.
76.林聖達, 氧化亞銅與氧化銅奈米微粒的熱縮現象探討, in 物理研究所. 2011, 國立中央大學: 桃園縣. p. 79.
77.Li, X., et al., Superwetting copper meshes based on self-organized robust CuO nanorods: efficient water purification for in situ oil removal and visible light photodegradation, in Nanoscale. 2018, The Royal Society of Chemistry. p. 4561-4569.
78.陳思宜, 鋅摻雜氧化銅奈米線之合成與應用, in 電機工程研究所. 2011, 國立臺南大學: 台南市. p. 54.
79.Tang, Z., et al., Cost-effective aqueous-phase synthesis of long copper nanowires, in RSC Advances. 2015, The Royal Society of Chemistry. p. 83880-83884.
80.蔡鎧安, 金與氧化銅之奈米異質結構及其在光電化學分解水之應用, in 材料科學與工程學系. 2011, 國立交通大學: 新竹市. p. 49.
81.Zhu, Y.W., et al., Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films, in Nanotechnology. 2005. p. 88-92.
82.林有祥, 水熱法合成氧化銅奈米薄片及其硫化氫氣體感測特性, in 材料科學與工程學系所. 2014, 國立中興大學: 台中市. p. 54.
83.林宥豪, 氧化亞銅粉末與氧化銅薄膜的製備及其特性研究, in 電子物理學系研究所. 2011, 國立嘉義大學: 嘉義市. p. 89.
84.陳俊吉, 金屬氧化物半導體在可見光分解水製氫之研究, in 化學工程學系碩博士班. 2005, 國立成功大學: 台南市. p. 76.
85.Kim, J., W. Kim, and K. Yong, CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing, in The Journal of Physical Chemistry C. 2012, American Chemical Society. p. 15682-15691.
86.Li, S., et al., Large-Scale Synthesis of Well-Dispersed Copper Nanowires in an Electric Pressure Cooker and Their Application in Transparent and Conductive Networks, in Inorganic Chemistry. 2014, American Chemical Society. p. 4440-4444.
87.Chang, Y.-C., et al., Construction of CuO/In2S3/ZnO heterostructure arrays for enhanced photocatalytic efficiency, in Nanoscale. 2017, The Royal Society of Chemistry. p. 13235-13244.
88.李偉立, 碳奈米結構的美. 2011年6月: 科學發展 第462期. p. 54-59.
89.蘇明德, 碳的自述. 2017年8月: 科學發展 第536期. p. 58-69.
90.康惠翔, 利用乙烯/氨氣混合氣體以感應耦合式電漿輔助熱化學氣相沉積法製備碳薄膜:不同電漿射頻功率對碳薄膜性質之影響, in 材料科學與工程學系所. 2015, 國立中興大學: 台中市. p. 107.
91.Xiong, X.B., et al., A Novel Strategy for Preparation of Si-HA Coatings on C/C Composites by Chemical Liquid Vaporization Deposition/Hydrothermal Treatments, in Scientific Reports. 2016.
92.闕壯翰, 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制, in 物理學系. 2013, 國立中央大學: 桃園縣. p. 64.
93.Robertson, J., Diamond-like amorphous carbon, in Materials Science and Engineering: R: Reports. 2002. p. 129-281.
94.Jung, H.Y., et al., Transparent, flexible supercapacitors from nano-engineered carbon films. Scientific Reports, 2012. 2.
95.史豐魁, 濺鍍氣氛中氮氣含量對碳薄膜特性之影響, in 機械工程系. 2014, 南臺科技大學: 台南市. p. 81.
96.Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon Nanotubes--the Route Toward Applications, in Science. 2002. p. 787-792.
97.Srivastava, S.K., et al., Growth, structure and field emission characteristics of petal like carbon nano-structured thin films, in Thin Solid Films. 2005. p. 124-130.
98.郭懷仁, 以濕式化學法製備TiO2晶相、形貌與其成長性質之研究, in 材料科學與工程學系. 2012, 國立東華大學: 花蓮縣. p. 120.
99.陳光華、鄧金祥、張勁燕, 奈米薄膜技術與應用. 2005年: 五南圖書出版公司.
100.陳信良, 電漿子修飾獨立三維有序介孔碳薄膜於光催化降解有機汙染物之應用, in 材料科學與工程學系. 2015, 逢甲大學: 台中市. p. 102.
101.Li, C., et al., Graphene Nano-“patches” on a Carbon Nanotube Network for Highly Transparent/Conductive Thin Film Applications, in The Journal of Physical Chemistry C. 2010, American Chemical Society. p. 14008-14012.
102.蘇明德, 銀的自述. 2007年12月: 科學發展 第420期. p. 52-57.
103.史哲瑋, 以分子動力學模擬探討聚甲基丙烯酸甲酯與銀奈米粒子複合物之機械性質, in 機械與機電工程學系研究所. 2016, 國立中山大學: 高雄市. p. 78.
104.Svitlana, C. and E. Matthias, Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal, in Angewandte Chemie International Edition. 2013. p. 1636-1653.
105.Tolaymat, T.M., et al., An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers, in Science of The Total Environment. 2010. p. 999-1006.
106.郭清癸、黃俊傑、牟中原, 金屬奈米粒子的製造. 2001年: 物理雙月刊. p. 614-624.
107.Abou El-Nour, K.M.M., et al., Synthesis and applications of silver nanoparticles, in Arabian Journal of Chemistry. 2010. p. 135-140.
108.黃惠平, 銀奈米粒子在高分子溶液中之製備與分析, in 化學工程研究所. 2011, 明志科技大學: 新北市. p. 106.
109.柯重宇, 探討銀奈米粒子在UV光下生成之影響, in 應用化學系研究所. 國立嘉義大學: 嘉義市.
110.Dieringer, J.A., et al., Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule, in Journal of the American Chemical Society. 2009, American Chemical Society. p. 849-854.
111.Kubin, R.F. and A.N. Fletcher, Fluorescence quantum yields of some rhodamine dyes, in Journal of Luminescence. 1982. p. 455-462.
112.Andreozzi, R., et al., Antibiotic removal from wastewaters: The ozonation of amoxicillin, in Journal of Hazardous Materials. 2005. p. 243-250.
113.Gillies, M., et al., Common harms from amoxicillin: a systematic review and meta-analysis of randomized placebo-controlled trials for any indication, in Canadian Medical Association Journal. 2015. p. E21-E31.
114.Farquharson, S., et al., Detection of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy, in Vibrational Spectroscopy. 2005. p. 79-84.
115.陳建銘, 銀奈米結構於表面增強拉曼光譜之應用, in 材料科學與工程學系. 2016, 逢甲大學: 台中市. p. 102.
116.Stuart, F., et al., Analysis of 5‐fluorouracil in saliva using surface‐enhanced Raman spectroscopy, in Journal of Raman Spectroscopy. 2005. p. 208-212.
117.Shi, Y.M., et al., van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates, in Nano Letters. 2012. p. 2784-2791.
118.張文豪, 具二硫化鉬-石墨烯和二硫化鉬-二氧化鈦混成薄膜之對電極的染料敏化太陽能電池特性研究, in 光電科技研究所. 2014, 國立彰化師範大學: 彰化縣. p. 58.
119.Qu, R., et al., A MoS2 nanosheet-coated mesh for pH-induced multi-pollutant water remediation with in situ electrocatalysis, in Journal of Materials Chemistry A. 2018, The Royal Society of Chemistry.
120.Miremadi, B.K., et al., A highly sensitive and selective hydrogen gas sensor from thick oriented films of MoS2, in Applied Physics A. 1996. p. 271-275.
121.Chen, J. and F. Wu, Review of hydrogen storage in inorganic fullerene-like nanotubes, in Applied Physics A. 2004. p. 989-994.
122.Chang, K., et al., Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries, in Journal of Materials Chemistry. 2011, The Royal Society of Chemistry. p. 6251-6257.
123.Lin, J.-Y., C.-Y. Chan, and S.-W. Chou, Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells, in Chemical Communications. 2013, The Royal Society of Chemistry. p. 1440-1442.
124.Min, S.-W., et al., Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance, in Nanoscale. 2013, The Royal Society of Chemistry. p. 548-551.
125.蘇庭鋐, 以化學氣相法成長二硫化鉬於經表面處理之二氧化矽基板並探討其電特性之研究, in 光電科技研究所. 2018, 國立彰化師範大學: 彰化縣. p. 81.
126.Weijia, Z., et al., Synthesis of Few‐Layer MoS2 Nanosheet‐Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities, in Small. 2013. p. 140-147.
127.Mak, K.F., et al., Atomically thin MoS2 : A new direct-gap semiconductor Semiconductor, in Physical Review Letters. 2010, American Physical Society. p. 136805.
128.Coleman, J.N., et al., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, in Science. 2011. p. 568-571.
129.M., N., G. A., and R.C.N. R., Simple Synthesis of MoS2 and WS2 Nanotubes, in Advanced Materials. 2001. p. 283-286.
130.林佳慶, 鈦酸氫異質結構於光催化與表面增強拉曼光譜之應用, in 材料科學與工程學系. 2017, 逢甲大學: 台中市. p. 142.
131.張育唐, 比爾定律與吸收度, in 化學系. 2011, 國立臺灣大學: 科學Online.
132.陳建淼, 穿透式電子顯微鏡, in 物理所. 2009年9月, 國立彰化師範大學.
133.黃仲楷, 氣相層析, in 化學系. 2016年6月, 國立臺灣師範大學: 科學Online.
134.Liu, Z.W., M.L. Zhong, and C.M. Tang, Large-scale oxide nanostructures grown by thermal oxidation, in IOP Conference Series: Materials Science and Engineering. 2014. p. 012022.
135.Yuan, L., et al., Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals, in Acta Materialia. 2011. p. 2491-2500.
136.Kim, A., et al., Melamine Sensing in Milk Products by Using Surface Enhanced Raman Scattering, in Analytical Chemistry. 2012. p. 9303-9309.
137.陳紹宇, 垂直式矽奈米線陣列於前列腺癌症檢測, in 材料科學與工程學系. 2015, 國立中興大學: 台中市.
138.劉盈孜, 製備具胺基隻磁性吸附劑及其對銅離子吸附之研究, in 環境科學與工程學系. 2011, 東海大學: 台中市.
139.Gong, C., et al., Facile synthesis of ultra stable Fe3O4@Carbon core-shell nanoparticles entrapped satellite au catalysts with enhanced 4-nitrophenol reduction property, in Journal of the Taiwan Institute of Chemical Engineers. 2018. p. 229-235.
140.Zhang, F., et al., FeS2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries, in Journal of Power Sources. 2016. p. 56-64.
141.陳冠廷, 常壓微波電漿裂解與蒸氣重組甲烷產氫之研究, in 化學工程系碩士班. 2007, 國立高雄應用科技大學. p. 128.
142.Tanahashi, I. and Y. Harada, Silver nanoparticles deposited on TiO2-coated cicada and butterfly wings as naturally inspired SERS substrates, in Journal of Materials Chemistry C. 2015, The Royal Society of Chemistry. p. 5721-5726.
143.Kibar, G., et al., Newly designed silver coated-magnetic, monodisperse polymeric microbeads as SERS substrate for low-level detection of amoxicillin, in Journal of Molecular Structure. 2016. p. 133-138.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊