|
[1]BP p.l.c. (2017). BP Statistical Review of World Energy. Retrieved January 25, 2018, from https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf [2]R. Kerr, (2007). Global warming is changing the world, Science, 316, 188-190. [3]M. C. Urban, (2015). Accelerating extinction risk from climate change, Science, 348, 571-573. [4]經濟部能源局(2017)。能源發展綱領。上網日期:2018年1月25日,檢自 https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=61 [5]International Energy Agency, (2017). Key World Energy Statistics. Retrieved January 25, 2018, from https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf [6]T. Urban, (2015). The deal with solar. Retrieved January 25, 2018, from http://waitbutwhy.com/2015/06/the-deal-with-solar.html [7]D. Mulvaney, (2014). Solar energy isn’t always as green as you think. Retrieved January 25, 2018, from https://spectrum.ieee.org/green-tech/solar/solar-energy-isnt-always-as-green-as-you-think [8]B. Liu, S. Duan and T. Cai, (2011). Photovoltaic DC-building-module-based BIPV system-concept and design considerations, IEEE Transactions on Power Electronics, 26, 1418-1429. [9]A. Wilkins, (2017). Forty Years Before Tesla Solar Roofs, NASA Solar Was "Far Out". Retrieved January 25, 2018, from https://www.inverse.com/article/35276-nasa-solar-roof [10]A. Froelich, (2017). Tesla’s new Solar Roof is actually cheaper than a normal roof. Retrieved January 25, 2018, from https://inhabitat.com/teslas-new-solar-roof-is-actually-cheaper-than-a-normal-roof/ [11]Apple, (2017). Apple Park opens to employees in April. Retrieved January 25, 2018, from https://www.apple.com/newsroom/2017/02/apple-park-opens-to-employees-in-april.html [12]經濟部能源局(2014)。建築整合型太陽光電發電設備示範獎勵辦法。上網日期:2018年1月25日,檢自 https://www.moeaboe.gov.tw/ecw/populace/Law/Content.aspx?menu_id=1090 [13]高雄體育處(2009)。高雄國家體育場太陽能光電介紹。上網日期:2018年1月25日,檢自 https://www.khms.gov.tw/ArenaIntroduction/NationalStadium/StadiumEnergy.htm [14]N.-G. Park, (2013). Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, The Journal of Physical Chemistry Letters, 4, 2423-2429. [15]J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, (2013). Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Environmental Science, 6, 1739-1743. [16]J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316-319. [17]H.-S. Kim, S. H. Im and N.-G. Park, (2014). Organolead halide perovskite: new horizons in solar cell research, The Journal of Physical Chemistry C, 118, 5615-5625. [18]D. Liu and T. L. Kelly, (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics, 8, 133-138. [19]N.-G. Park, (2015). Perovskite solar cells: an emerging photovoltaic technology, Materials Today, 18, 65-72. [20]W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez and H. J. Snaith, (2015). Highly efficient perovskite solar cells with tunable structural color, Nano Letters, 15, 1698-1702. [21]D. Sinefield, (2018). APPLE PARK: January 2018 construction update. Retrieved January 25, 2018, from https://www.youtube.com/watch?v=MXdXoQBVFmE [22]National Renewable Energy Laboratory. (2018). Best research-cell efficiencies. Retrieved January 25, 2018, from https://www.nrel.gov/pv/assets/images/efficiency-chart.png [23]A. E. Becquerel, (1839). Memoire sur les effects electriques produits sous I'influence des rayons solaires, Comptes Rendus de L'Academie des Sciences, 9, 561- 567. [24]W. Smith, (1873). Effect of light on selenium during the passage of an electric current, Nature, 7, 303. [25]C. E. Fritts, (1883). On a new form of selenium cell, and some electrical discoveries made by its use, American Journal of Science, 26, 465-472. [26]D. M. Chapin, C. S. Fuller and G. L. Pearson, (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, 25, 676. [27]A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. D. Wolf and C. Ballif, (2013). >21% efficient silicon heterojunction solar cells on n-and p-type wafers compared, IEEE Journal of Photovoltaic, 3, 83-89. [28]D. E. Carlson and C. R. Wronski, (1976). Amorphous silicon solar cell, Applied Physics Letters, 28, 671. [29]W. Shockley and H. J. Queisser, (1961). Detailed balance limit of efficiency of p‐n junction solar cells, Journal of applied physics, 32, 510-519. [30]M. Liu, M. B. Johnston and H. J. Snaith, (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395-398. [31]P. Gao, M. Gratzel and M. K. Nazeeruddin, (2014). Organohalide lead perovskites for photovoltaic applications, Energy & Environmental Science, 7, 2448-2463. [32]H. S. Jung and N.-G. Park, (2015). Perovskite solar cells: from materials to devices, Small, 11, 10-25. [33]O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, (2014). Perovskite solar cells employing organic charge-transport layers, Nature Photonics, 8, 128-132. [34]H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, (2014). Interface engineering of highly efficient perovskite solar cells, Science, 345, 542-546. [35]M. A. Green, A. H.-Baillie and H. J. Snaith, (2014). The emergence of perovskite solar cells, Nature Photonics, 8, 506-514. [36]K. Chondroudis and D. B. Mitzi, (1999). Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers, Chemistry of Materials, 11, 3028-3030. [37]A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131, 6050-6051. [38]J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088-4093. [39]H.-S. Kim, C-R Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific Reports, 2, 591. [40]L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Grätze, (2012). Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, Journal of the American Chemical Society, 134, 17396-17399. [41]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643. [42]R. Coontz, (2013). Science's Top 10 Breakthroughs of 2013. Retrieved January 25, 2018, from http://www.sciencemag.org/news/2013/12/sciences-top-10-breakthroughs-2013 [43]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nature Materials, 13, 897-903. [44]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234-1237. [45]W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan and S.-H. Wei, (2015). Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A, 3, 8926-8942. [46]T. H. Liu, K. Chen, Q. Hu, R. Zhu, and Q. H. Gong, (2016). Inverted perovskite solar cells: progresses and perspectives, Advanced Energy Materials, 6, 1600457. [47]J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, (2014). Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 8, 1674-1680. [48]L. Meng, J. You, T.-F. Guo and Y. Yang, (2016). Recent advances in the inverted planar structure of perovskite solar cells, Accounts of Chemical Research, 49, 155-165. [49]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nature Communications, 4, 2761. [50]C.-C. Chueh, C.-Z. Li and A. K.-Y. Jen, (2015). Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells, Energy & Environmental Science, 8, 1160-1189. [51]J. Min, Z. G. Zhang, Y. Hou, C. O. R. Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. F. Li and C. J. Brabec, (2015). Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance, Chemistry of Materials, 27, 227-234. [52]L.-M. Chen, Z. Hong, G. Li and Y. Yang, (2009). Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells, Advanced Materials, 21, 1434-1449. [53]H. Ma, H. L. Yip, F. Huang and A. K.-Y. Jen, (2010). Interface engineering for organic electronics, Advanced Functional Materials, 20, 1371-1388. [54]H. L. Yip and A. K.-Y. Jen, (2012). Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy & Environmental Science, 5, 5994-6011. [55]H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf and C. J. Brabec, (2014). Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer, Chemistry of Materials, 26, 5190-5193. [56]F. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Grätzel and W. C. H. Choy, (2015). Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells, ACS Nano, 9, 639-646. [57]Q. Xue, Z. Hu, J. Liu, J. Lin, C. Sun, Z. Chen, C. Duan, J. Wang, C. Liao, W. M. Lau, F. Huang, H.-L. Yip and Y. Cao, (2014). Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer, Journal of Materials Chemistry A, 2, 19598-19603. [58]P.-W. Liang, C.-Y- Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin and A. K.-Y. Jen, (2014). Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells, Advanced Materials, 26, 3748-3754. [59]N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, (2014). o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells, Journal of the American Chemical Society, 136, 7837-7840. [60]H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du and T. Ma, (2015). Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells, Journal of Physical Chemistry C, 119, 4600-4605. [61]Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip and S.-W. Tsang, (2015). Decomposition of organometal halide perovskite films on zinc oxide nanoparticles, ACS Applied Materials & Interfaces, 7, 19986-19993. [62]Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn and B. Kippelen, (2012). A universal method to produce low-work function electrodes for organic electronics, Science, 336, 327-332. [63]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chemical Reviews, 105, 1103-1169. [64]J. Zou, C.-Z. Li, C.-Y. Chang, H.-L. Yip and A. K.-Y. Jen, (2014). Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells, Advanced Materials, 26, 3618-3623. [65]J. H. Cho, J. A. Lim, J. T. Han, H. W. Jang, J.-L. Lee and K. Cho, (2005). Control of the electrical and adhesion properties of metal/organic interfaces with self-assembled monolayers, Applied Physics Letters, 86, 171906. [66]H.-L. Yip, S. K. Hau, N. S. Baek and A. K.-Y. Jen, (2008). Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells, Applied Physics Letters, 92, 193313. [67]C.-Y. Chang, Y.-C. Chang, W.-K. Huang, K.-T. Lee, A.-C. Cho and C.-C. Hsu, (2015). Enhanced performance and stability of semitransparent perovskite solar cells using solution-processed thiol-functionalized cationic surfactant as cathode buffer layer, Chemistry of Materials, 27, 7119-7127. [68]T. Minami, (2008). Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications, Thin Solid Films, 516, 1314-1321. [69]K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn and T. Riedl, (2014). Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides, Advanced Functional Materials, 24, 1671-1678. [70]C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.-K. R. Wu and L. J. Guo, (2014). An ultrathin, smooth, and low‐loss Al‐doped Ag film and its application as a transparent electrode in organic photovoltaics, Advanced Materials, 26, 5696-5701. [71]S. B. Sepulveda-Mora and S. G. Cloutier, (2012). Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks, Journal of Nanomaterials, 2012, 286104. [72]S. Schubert, M. Hermenau, J. Meiss, L. Müller‐Meskamp and K. Leo, (2012). Oxide sandwiched metal thin‐film electrodes for long‐term stable organic solar cells, Advanced Functional Materials, 22, 4993-4999. [73]M. Hu, S. Noda and H. Komiyama, (2002). A new insight into the growth mode of metals on TiO2(110), Surface Science, 513, 530-538. [74]C. T. Campbell, (2012). Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties, Surface Science Reports, 27, 1-111. [75]R. S. Sennett and G. D. Scott, (1950). The structure of evaporated metal films and their optical properties, Journal of the Optical Society of America, 40, 203-211. [76]H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chen and Y. Yang, (2015). Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives, Journal of Materials Chemistry A, 3, 9108-9115. [77]X. Bao, Y. Wang, Q. Zhu, N. Wang, D. Zhu, J. Wang, A. Yang and R. Yang, (2015). Efficient planar perovskite solar cells with large fill factor and excellent stability, Journal of Power Sources, 297, 53-58. [78]C.-Y. Chang, K.-T. Lee, W.-K. Huang, H.-Y. Siao and Y.-C. Chang, (2015). High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition, Chemistry of Materials, 27, 5122-5130. [79]C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee and C.-T. Chen, (2016). Room-temperature solution-processed n-doped zirconium oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells, Chemistry of Materials, 28, 242-251. [80]C.-Y. Chang, W.-K. Huang, Y.-C. Chang, K.-T. Lee and C.-T. Chen, (2016). A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells, Journal of Materials Chemistry A, 4, 640-648. [81]M. Hu, S. Noda, T. Okubo, Y. Yamaguchi and H. Komiyama, (2001). Structure and morphology of self-assembled 3-mercaptopropyltrime- thoxysilane layers on silicon oxide, Applied Surface Science, 181, 307-316. [82]E. Pavlovic, A. P. Quist, U. Gelius and S. Oscarsson, (2002). Surface functionalization of silicon oxide at room temperature and atmospheric pressure, Journal of Colloid and Interface Science, 254, 200-203. [83]D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi and D. Vuillaume, (2005). A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane, Small, 1, 725-729. [84]S. Ryu, J. Seo, S. S. Shin, Y. C. Kim, N. J. Jeon, J. H. Noh and S. I. Seok, (2015). Fabrication of metal oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature, Journal of Materials Chemistry A, 3, 3271-3275. [85]H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski and W. Zhang, (2014). Anomalous hysteresis in perovskite solar cells, The Journal of Physical Chemistry Letters, 5, 1511-1515. [86]J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych and E. H. Sargent, (2015). Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes, Nature Communications, 6, 7081. [87]M.-C. Jung, S. R. Raga, L. K. Ono and Y. Qi, (2015). Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering, Scientific Reports, 5, 9863. [88]D. Song, D. Wei, P. Cui, M. Li, Z. Duan, T. Wang, J. Ji, Y. Li, J. M. Mbengue, Y. Li, Y. He, M. Trevor and N.-G. Park, (2016). Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells, Journal of Materials Chemistry A, 4, 6091-6097. [89]G. Niu, X. Guo and L. Wang, (2015). Review of recent progress in chemical stability of perovskite solar cells, Journal of Materials Chemistry A, 3, 8970-8980. [90]N. H. Tiep, Z. Ku and H. J. Fan, (2016). Recent advances in improving the stability of perovskite solar cells, Advanced Energy Materials, 6, 1501420.
|