跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡博舟
研究生(外文):TSAI, BO-CHOU
論文名稱:藉由自組裝單分子層實現高效能高穩定大面積鈣鈦礦太陽能電池
論文名稱(外文):Achieving High Efficiency and Improved Stability in Large-Area ITO Free Perovskite Solar Cells with Thiol-Functionalized Self-Assembled Monolayers
指導教授:張志宇張志宇引用關係
指導教授(外文):CHANG, CHIH-YU
口試委員:王致傑林巧奇
口試日期:2018-06-13
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:79
中文關鍵詞:鈣鈦礦太陽能電池能量轉換效率穩定性界面修飾
外文關鍵詞:perovskite solar cellsperformancestabilityinterface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機-無機鹵化鈣鈦礦太陽能電池具備低溫溶液態製程、高光電轉換效率、可撓曲等多重優勢,近年來受到廣泛的關注。欲成功實現高效率、高穩定度元件,界面修飾技術之開發至關重要。傳統元件多採用含稀有金屬銦之高成本的氧化銦錫(Indium tin oxide, ITO)做為電極,其存在薄膜電阻高與無法撓曲等缺失。本研究將聚焦於介紹利用超薄Ag來取代ITO,成功提升鈣鈦礦太陽能電池之元件效率、穩定度以及大面積製程實用性。有別於現已開發之超薄Ag電極大多面臨島狀成長導致薄膜電阻普遍偏高的關鍵議題。本研究選用兩種帶有硫醇官能基的自組裝單分子層(Self-assembled monolayers, SAMs)3-mercaptopropyltrimethoxysilane(MPTMS)及(11-mercaptoundecyl) trimethylammonium bromide(MUTAB)分別做為透明超薄Ag電極之成核誘導層(Seed layer)和陰極界面修飾層(Cathode buffer layer, CBL)。研究結果顯示,MPTMS SAM的硫醇官能基容易與Ag產生交互作用來改善Ag的成核,從而將Ag的臨界厚度降低至8 nm,使超薄Ag達到低薄膜電阻(6 Ω/sq)與高穿透率(78%)。另一方面, MUTAB的硫醇官能基可以與Ag產生共價鍵形成SAM,使另一端的銨陽離子於PC61BM/Ag界面形成良好的偶極矩,有效修飾Ag電極之功函數,達到良好載子收集效果與穩定性。將上述實驗結果運用於大面積元件(1.2 cm2),光電轉換效率可達~16%,為目前鈣鈦礦太陽能電池相似有效面積之最高效率值,並且不需要經過嚴密的封裝即可具有良好的環境穩定性。本研究證實以原子級的界面修飾對超薄Ag做為透明電極的鈣鈦礦太陽能電池具有顯著的影響。
We report a novel protocol for achieving highly efficient and stable indium-tin-oxide (ITO)-free large-area perovskite solar cells (PeSCs) by introducing thiol-functionalized self-assembled monolayers (SAMs) to modify the interfacial properties of the devices. Two SAM molecules, 3-mercaptopropyltrimethoxysilane (MPTMS) and (11-mercaptoundecyl) trimethylammonium bromide (MUTAB), are employed as the seed layer for an ultrathin Ag transparent electrode and cathode buffer layer (CBL), respectively. Our results indicate that both SAMs can afford admirable interfacial properties. The thiol groups on the MPTMS SAM can interact with the incident Ag atoms, thereby lowering the percolation thickness of the Ag film to 8 nm. The resulting ultrathin Ag film provides several remarkable features for use as the transparent electrode in PeSCs, including a low resistance of ∼6 Ω/sq, high average transmittance up to ∼78%, and high robustness against solvents and mechanical deformation. In addition to using the MPTMS SAM as the seed layer, the double-end functionalized MUTAB can not only covalently bond to the Ag surface for SAM formation, but also induce the formation of favorable interfacial dipoles to turn a high work-function (WF) Ag electrode into an efficient low-WF electrode. With this SAMs-modified Ag electrode, a high power conversion efficiency (PCE) up to 16% can be secured for large-area devices (1.2 cm2), which represents the highest PCE ever reported for PeSCs with similar active areas. More significantly, the resulting devices also possess good ambient stability without the need for rigorous encapsulation.
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 7
第二章 文獻回顧 8
2.1 太陽能電池發展簡介 8
2.1.1 第一代太陽能電池 9
2.1.2 第二代太陽能電池 10
2.1.3 第三代太陽能電池 10
2.2 鈣鈦礦太陽能電池發展 11
2.3 鈣鈦礦太陽能電池工作機制 15
2.4 陰極界面修飾層 16
2.5 超薄金屬電極與成核誘導層 20
2.6 太陽能電池之性能分析 23
2.6.1 串聯電阻(Series resistance, Rs)與並聯電阻(Shunt resistance, Rsh) 23
2.6.2 開路電壓(Open Circuit Voltage, Voc) 24
2.6.3 短路電流密度(Short Circuit Current Density, Jsc) 24
2.6.4 填充因子(Fill Factor, FF) 25
2.6.5 能量轉換效率(Power Conversion Efficiency, PCE) 25
第三章 實驗步驟與分析 27
3.1 實驗設計 27
3.2 元件製備 28
3.2.1 材料準備 28
3.2.2 基板清洗流程 28
3.2.3 製備氧化鋯(ZrOx)薄膜 29
3.2.4 製備利用SAMs修飾的薄Ag 29
3.2.5 太陽能電池製備 29
3.2.6 太陽能元件分析與量測 30
第四章 結果與討論 31
4.1 鈣鈦礦主動層相關分析 31
4.2 成核誘導層之修飾效果 32
4.2.1 MPTMS SAM表面分析 32
4.2.2 MPTMS SAM修飾之超薄Ag特性分析 34
4.2.4 超薄Ag電極鈣鈦礦太陽能電池光電特性分析 41
4.3 陰極界面修飾層之修飾效果 43
4.4 鈣鈦礦太陽能電池光電特性分析 46
4.4.1 MAPbI3鈣鈦礦太陽能電池光電特性分析 46
4.4.2 FAPbI3鈣鈦礦太陽能電池光電特性分析 50
4.4.3 大面積FAPbI3鈣鈦礦太陽能電池光電特性分析 55
第五章 結論 58
參考文獻 59

[1]BP p.l.c. (2017). BP Statistical Review of World Energy. Retrieved January 25, 2018, from
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf
[2]R. Kerr, (2007). Global warming is changing the world, Science, 316, 188-190.
[3]M. C. Urban, (2015). Accelerating extinction risk from climate change, Science, 348, 571-573.
[4]經濟部能源局(2017)。能源發展綱領。上網日期:2018年1月25日,檢自
https://www.moeaboe.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=61
[5]International Energy Agency, (2017). Key World Energy Statistics. Retrieved January 25, 2018, from
https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf
[6]T. Urban, (2015). The deal with solar. Retrieved January 25, 2018, from http://waitbutwhy.com/2015/06/the-deal-with-solar.html
[7]D. Mulvaney, (2014). Solar energy isn’t always as green as you think. Retrieved January 25, 2018, from
https://spectrum.ieee.org/green-tech/solar/solar-energy-isnt-always-as-green-as-you-think
[8]B. Liu, S. Duan and T. Cai, (2011). Photovoltaic DC-building-module-based BIPV system-concept and design considerations, IEEE Transactions on Power Electronics, 26, 1418-1429.
[9]A. Wilkins, (2017). Forty Years Before Tesla Solar Roofs, NASA Solar Was "Far Out". Retrieved January 25, 2018, from
https://www.inverse.com/article/35276-nasa-solar-roof
[10]A. Froelich, (2017). Tesla’s new Solar Roof is actually cheaper than a normal roof. Retrieved January 25, 2018, from
https://inhabitat.com/teslas-new-solar-roof-is-actually-cheaper-than-a-normal-roof/
[11]Apple, (2017). Apple Park opens to employees in April. Retrieved January 25, 2018, from
https://www.apple.com/newsroom/2017/02/apple-park-opens-to-employees-in-april.html
[12]經濟部能源局(2014)。建築整合型太陽光電發電設備示範獎勵辦法。上網日期:2018年1月25日,檢自
https://www.moeaboe.gov.tw/ecw/populace/Law/Content.aspx?menu_id=1090
[13]高雄體育處(2009)。高雄國家體育場太陽能光電介紹。上網日期:2018年1月25日,檢自
https://www.khms.gov.tw/ArenaIntroduction/NationalStadium/StadiumEnergy.htm
[14]N.-G. Park, (2013). Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, The Journal of Physical Chemistry Letters, 4, 2423-2429.
[15]J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, (2013). Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Environmental Science, 6, 1739-1743.
[16]J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316-319.
[17]H.-S. Kim, S. H. Im and N.-G. Park, (2014). Organolead halide perovskite: new horizons in solar cell research, The Journal of Physical Chemistry C, 118, 5615-5625.
[18]D. Liu and T. L. Kelly, (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics, 8, 133-138.
[19]N.-G. Park, (2015). Perovskite solar cells: an emerging photovoltaic technology, Materials Today, 18, 65-72.
[20]W. Zhang, M. Anaya, G. Lozano, M. E. Calvo, M. B. Johnston, H. Míguez and H. J. Snaith, (2015). Highly efficient perovskite solar cells with tunable structural color, Nano Letters, 15, 1698-1702.
[21]D. Sinefield, (2018). APPLE PARK: January 2018 construction update. Retrieved January 25, 2018, from
https://www.youtube.com/watch?v=MXdXoQBVFmE
[22]National Renewable Energy Laboratory. (2018). Best research-cell efficiencies. Retrieved January 25, 2018, from
https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[23]A. E. Becquerel, (1839). Memoire sur les effects electriques produits sous I'influence des rayons solaires, Comptes Rendus de L'Academie des Sciences, 9, 561- 567.
[24]W. Smith, (1873). Effect of light on selenium during the passage of an electric current, Nature, 7, 303.
[25]C. E. Fritts, (1883). On a new form of selenium cell, and some electrical discoveries made by its use, American Journal of Science, 26, 465-472.
[26]D. M. Chapin, C. S. Fuller and G. L. Pearson, (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, 25, 676.
[27]A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. D. Wolf and C. Ballif, (2013). >21% efficient silicon heterojunction solar cells on n-and p-type wafers compared, IEEE Journal of Photovoltaic, 3, 83-89.
[28]D. E. Carlson and C. R. Wronski, (1976). Amorphous silicon solar cell, Applied Physics Letters, 28, 671.
[29]W. Shockley and H. J. Queisser, (1961). Detailed balance limit of efficiency of p‐n junction solar cells, Journal of applied physics, 32, 510-519.
[30]M. Liu, M. B. Johnston and H. J. Snaith, (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395-398.
[31]P. Gao, M. Gratzel and M. K. Nazeeruddin, (2014). Organohalide lead perovskites for photovoltaic applications, Energy & Environmental Science, 7, 2448-2463.
[32]H. S. Jung and N.-G. Park, (2015). Perovskite solar cells: from materials to devices, Small, 11, 10-25.
[33]O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, (2014). Perovskite solar cells employing organic charge-transport layers, Nature Photonics, 8, 128-132.
[34]H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, (2014). Interface engineering of highly efficient perovskite solar cells, Science, 345, 542-546.
[35]M. A. Green, A. H.-Baillie and H. J. Snaith, (2014). The emergence of perovskite solar cells, Nature Photonics, 8, 506-514.
[36]K. Chondroudis and D. B. Mitzi, (1999). Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers, Chemistry of Materials, 11, 3028-3030.
[37]A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131, 6050-6051.
[38]J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088-4093.
[39]H.-S. Kim, C-R Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific Reports, 2, 591.
[40]L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Grätze, (2012). Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, Journal of the American Chemical Society, 134, 17396-17399.
[41]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643.
[42]R. Coontz, (2013). Science's Top 10 Breakthroughs of 2013. Retrieved January 25, 2018, from
http://www.sciencemag.org/news/2013/12/sciences-top-10-breakthroughs-2013
[43]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nature Materials, 13, 897-903.
[44]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234-1237.
[45]W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan and S.-H. Wei, (2015). Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A, 3, 8926-8942.
[46]T. H. Liu, K. Chen, Q. Hu, R. Zhu, and Q. H. Gong, (2016). Inverted perovskite solar cells: progresses and perspectives, Advanced Energy Materials, 6, 1600457.
[47]J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, (2014). Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 8, 1674-1680.
[48]L. Meng, J. You, T.-F. Guo and Y. Yang, (2016). Recent advances in the inverted planar structure of perovskite solar cells, Accounts of Chemical Research, 49, 155-165.
[49]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nature Communications, 4, 2761.
[50]C.-C. Chueh, C.-Z. Li and A. K.-Y. Jen, (2015). Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells, Energy & Environmental Science, 8, 1160-1189.
[51]J. Min, Z. G. Zhang, Y. Hou, C. O. R. Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. F. Li and C. J. Brabec, (2015). Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance, Chemistry of Materials, 27, 227-234.
[52]L.-M. Chen, Z. Hong, G. Li and Y. Yang, (2009). Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells, Advanced Materials, 21, 1434-1449.
[53]H. Ma, H. L. Yip, F. Huang and A. K.-Y. Jen, (2010). Interface engineering for organic electronics, Advanced Functional Materials, 20, 1371-1388.
[54]H. L. Yip and A. K.-Y. Jen, (2012). Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy & Environmental Science, 5, 5994-6011.
[55]H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf and C. J. Brabec, (2014). Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer, Chemistry of Materials, 26, 5190-5193.
[56]F. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Grätzel and W. C. H. Choy, (2015). Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells, ACS Nano, 9, 639-646.
[57]Q. Xue, Z. Hu, J. Liu, J. Lin, C. Sun, Z. Chen, C. Duan, J. Wang, C. Liao, W. M. Lau, F. Huang, H.-L. Yip and Y. Cao, (2014). Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer, Journal of Materials Chemistry A, 2, 19598-19603.
[58]P.-W. Liang, C.-Y- Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin and A. K.-Y. Jen, (2014). Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells, Advanced Materials, 26, 3748-3754.
[59]N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, (2014). o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells, Journal of the American Chemical Society, 136, 7837-7840.
[60]H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du and T. Ma, (2015). Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells, Journal of Physical Chemistry C, 119, 4600-4605.
[61]Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip and S.-W. Tsang, (2015). Decomposition of organometal halide perovskite films on zinc oxide nanoparticles, ACS Applied Materials & Interfaces, 7, 19986-19993.
[62]Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn and B. Kippelen, (2012). A universal method to produce low-work function electrodes for organic electronics, Science, 336, 327-332.
[63]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chemical Reviews, 105, 1103-1169.
[64]J. Zou, C.-Z. Li, C.-Y. Chang, H.-L. Yip and A. K.-Y. Jen, (2014). Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells, Advanced Materials, 26, 3618-3623.
[65]J. H. Cho, J. A. Lim, J. T. Han, H. W. Jang, J.-L. Lee and K. Cho, (2005). Control of the electrical and adhesion properties of metal/organic interfaces with self-assembled monolayers, Applied Physics Letters, 86, 171906.
[66]H.-L. Yip, S. K. Hau, N. S. Baek and A. K.-Y. Jen, (2008). Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells, Applied Physics Letters, 92, 193313.
[67]C.-Y. Chang, Y.-C. Chang, W.-K. Huang, K.-T. Lee, A.-C. Cho and C.-C. Hsu, (2015). Enhanced performance and stability of semitransparent perovskite solar cells using solution-processed thiol-functionalized cationic surfactant as cathode buffer layer, Chemistry of Materials, 27, 7119-7127.
[68]T. Minami, (2008). Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications, Thin Solid Films, 516, 1314-1321.
[69]K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn and T. Riedl, (2014). Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides, Advanced Functional Materials, 24, 1671-1678.
[70]C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.-K. R. Wu and L. J. Guo, (2014). An ultrathin, smooth, and low‐loss Al‐doped Ag film and its application as a transparent electrode in organic photovoltaics, Advanced Materials, 26, 5696-5701.
[71]S. B. Sepulveda-Mora and S. G. Cloutier, (2012). Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks, Journal of Nanomaterials, 2012, 286104.
[72]S. Schubert, M. Hermenau, J. Meiss, L. Müller‐Meskamp and K. Leo, (2012). Oxide sandwiched metal thin‐film electrodes for long‐term stable organic solar cells, Advanced Functional Materials, 22, 4993-4999.
[73]M. Hu, S. Noda and H. Komiyama, (2002). A new insight into the growth mode of metals on TiO2(110), Surface Science, 513, 530-538.
[74]C. T. Campbell, (2012). Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties, Surface Science Reports, 27, 1-111.
[75]R. S. Sennett and G. D. Scott, (1950). The structure of evaporated metal films and their optical properties, Journal of the Optical Society of America, 40, 203-211.
[76]H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chen and Y. Yang, (2015). Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives, Journal of Materials Chemistry A, 3, 9108-9115.
[77]X. Bao, Y. Wang, Q. Zhu, N. Wang, D. Zhu, J. Wang, A. Yang and R. Yang, (2015). Efficient planar perovskite solar cells with large fill factor and excellent stability, Journal of Power Sources, 297, 53-58.
[78]C.-Y. Chang, K.-T. Lee, W.-K. Huang, H.-Y. Siao and Y.-C. Chang, (2015). High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition, Chemistry of Materials, 27, 5122-5130.
[79]C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee and C.-T. Chen, (2016). Room-temperature solution-processed n-doped zirconium oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells, Chemistry of Materials, 28, 242-251.
[80]C.-Y. Chang, W.-K. Huang, Y.-C. Chang, K.-T. Lee and C.-T. Chen, (2016). A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells, Journal of Materials Chemistry A, 4, 640-648.
[81]M. Hu, S. Noda, T. Okubo, Y. Yamaguchi and H. Komiyama, (2001). Structure and morphology of self-assembled 3-mercaptopropyltrime- thoxysilane layers on silicon oxide, Applied Surface Science, 181, 307-316.
[82]E. Pavlovic, A. P. Quist, U. Gelius and S. Oscarsson, (2002). Surface functionalization of silicon oxide at room temperature and atmospheric pressure, Journal of Colloid and Interface Science, 254, 200-203.
[83]D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi and D. Vuillaume, (2005). A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane, Small, 1, 725-729.
[84]S. Ryu, J. Seo, S. S. Shin, Y. C. Kim, N. J. Jeon, J. H. Noh and S. I. Seok, (2015). Fabrication of metal oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature, Journal of Materials Chemistry A, 3, 3271-3275.
[85]H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski and W. Zhang, (2014). Anomalous hysteresis in perovskite solar cells, The Journal of Physical Chemistry Letters, 5, 1511-1515.
[86]J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych and E. H. Sargent, (2015). Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes, Nature Communications, 6, 7081.
[87]M.-C. Jung, S. R. Raga, L. K. Ono and Y. Qi, (2015). Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering, Scientific Reports, 5, 9863.
[88]D. Song, D. Wei, P. Cui, M. Li, Z. Duan, T. Wang, J. Ji, Y. Li, J. M. Mbengue, Y. Li, Y. He, M. Trevor and N.-G. Park, (2016). Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells, Journal of Materials Chemistry A, 4, 6091-6097.
[89]G. Niu, X. Guo and L. Wang, (2015). Review of recent progress in chemical stability of perovskite solar cells, Journal of Materials Chemistry A, 3, 8970-8980.
[90]N. H. Tiep, Z. Ku and H. J. Fan, (2016). Recent advances in improving the stability of perovskite solar cells, Advanced Energy Materials, 6, 1501420.

電子全文 電子全文(全文開放日期20230801,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊