跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝明安
研究生(外文):HSIEH,MING-AN
論文名稱:以複合型絮凝劑對於硫化染料染整廢水之處理評估
論文名稱(外文):The Evaluation of Sulfur Dye containing Wastewater Using Composite Flocculants Treatment
指導教授:呂晃志
指導教授(外文):LEU,HOANG-JYH
口試委員:蔡宜壽林俊德呂晃志
口試委員(外文):TSAI,I-SHOULin,Justin Chun-TeLEU,HOANG-JYH
口試日期:2018-01-09
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:高嶺土染料廢水聚合氯化鋁/聚丙烯酰安
外文關鍵詞:kaolindye wastewaterPAC / PAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
染整業在染色時會因不同原料和製程而有所差異。一般而言,染棉以硫化染料為主,而在染色過程中需大量使用漿料、染料、界面活性劑等難分解之物質,造成廢水成份複雜、色度高,且衣服需求量隨季節及市場需增加而造成大量難處理之廢水。
近日,隨自然資源日益缺乏且環保意識的抬頭,目前紡織廠處理廢水方式主要以生物法處理、破壞其染料發色基團達到脫色的目的,但由於微生物對環境因素相當敏感,且對於十分複雜的染整廢水,微生物處理法一般難發揮到最佳的效果。而有效之複合型高分子絮凝劑,對pH值、溫度影響較小、且可使汙水處理廠設計更節能、佔地面積更小、投資成本更低等優點,也同樣可達到降低廢水的COD、SS、色度等。
實驗結果顯示,使用PAC/PAM/高嶺土的複合能有效處理廢水,COD去除率會隨PAC及高嶺土的增加而下降,在摻混比PAC(0.4g)/高嶺土(1.5g)/PAM(0.05g)時COD達最高去除率(98%),而在摻混比PAC(0.3g)/高嶺土(1.5g)/PAM(0.05g)時色度及懸浮顆粒為最低值,而此複合藥劑之無機成分,可經550 ℃下還原,回收再使用,減少汙泥之產生。

Dyeing and finishing industry in the dyeing due to different materials and made of different. In general, dye cotton to sulfur-based dye-based, and in the dyeing process requires extensive use of slurries, dyes, surfactants and other refractory substances, resulting in waste water composition is complex, high color, and the demand for clothes with the season and The market needs to increase and cause a lot of difficult to deal with the wastewater.
The growing shortage of natural resources and the rise of environmental awareness, the current treatment of wastewater treatment plants mainly to biological methods to destroy their dye chromophore to achieve the purpose of decolorization, but the micro-organisms are sensitive to environmental changes, the water quality is very complex dyeing wastewater , Microbial treatment is difficult to achieve the best results. The composite polymer flocculant has little effect on pH and temperature, and can make the design of sewage treatment plant more energy-efficient, small footprint, lower investment costs and other advantages, but also can reduce COD, SS, Chroma and so on.
The experimental results showed that the removal rate of COD decreased with the increase of PAC and clay, and reached the highest COD removal rate (98%) at the mixing ratio of PAC (0.4g) / kaolin (1.5g) / PAM (0.05g) Chroma and suspended particles were the lowest values when mixing ratio PAC (0.3g) / kaolin (1.5g) / PAM (0.05g).

目錄
摘要 II
Abstract III
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1前言 1
1-2紡織用染料 4
1-2-1硫化染料 4
1-2-2棉纖維 5
1-2-3染色 5
1-3染整廢水處理技術 7
1-3-1物理法 7
1-3-2化學法 8
1-3-3生物法 8
1-4循環經濟 9
1-5研究動機和目的 10
第二章 文獻回顧 11
2-1混合絮凝和直接絮凝 11
2-1-1混凝-絮凝 11
2-1-2直接絮凝 11
2-1-3混凝-絮凝與直接絮凝比較 12
2-2化學混凝劑和絮凝劑 13
2-2-1無機混凝劑 13
2-2-2有機合成絮凝劑 13
2-2-3複合型絮凝劑 14
2-2-4天然生物絮凝劑 14
2-2-5絮凝劑選擇 15
2-3絮凝原理 15
2-3-1電荷中和 16
2-3-2聚合物橋接 16
2-3-3靜電吸附 17
2-4天然生物絮凝 19
2-5接枝共聚物 19
2-6高嶺土 20
2-7化學需氧量 21
2-8懸浮固體 21
2-9生化需氧量 22
第三章 實驗方法與步驟 23
3-1 實驗藥品與儀器 23
3-1-1實驗藥品 23
3-1-2實驗儀器 23
3-1-3分析儀器 24
3-2實驗流程 24
3-2-1 廢水水質 25
3-3-2攪拌時間 25
3-2-3實驗參數 26
3-3 測試方法 27
3-3-1 化學需氧量分析 27
3-3-2 紫外線可見光分光光譜儀 29
3-3-3攜帶型多參數比色計 30
第四章 結果與討論 31
4-1 分光光譜儀分析 31
4-2 化學需氧量分析 37
4-3 色度、懸浮固體分析 39
4-4汙泥型態 41
4-5汙泥再生 45
第五章 結論 46
第六章 參考文獻 47


[1]P. Mullai, M. Yogeswari, S. Vishali, M. T. Namboodiri, B. Gebrewold, E. Rene, et al., "Aerobic Treatment of Effluents From Textile Industry," Current Developments in Biotechnology and Bioengineering: Biological Treatment of Industrial Effluents, p. 1, 2016.
[2]N. Uzal, "Effluent treatment in denim and jeans manufacture," in Denim, ed: Elsevier, 2015, pp. 541-561.
[3]T. A. Nguyen and R.-S. Juang, "Treatment of waters and wastewaters containing sulfur dyes: a review," Chemical engineering journal, vol. 219, pp. 109-117, 2013.
[4]H. Hayat, Q. Mahmood, A. Pervez, Z. A. Bhatti, and S. A. Baig, "Comparative decolorization of dyes in textile wastewater using biological and chemical treatment," Separation and Purification Technology, vol. 154, pp. 149-153, 2015.
[5]R. Paul, "Denim and jeans: an overview," Denim: Manufacture, Finishing and Applications, pp. 1-5, 2015.
[6]M. Wang, J. Yang, and H. Wang, "Optimisation of the synthesis of a water-soluble sulfur black dye," Dyes and pigments, vol. 50, pp. 243-246, 2001.
[7]J. McLoughlin, S. Hayes, and P. Roshan, "Cotton fibre for denim manufacture," Denim Manufacture, Finishing and Application, pp. 15-36, 2012.
[8]N. Meksi and M. Mhenni, "Indigo dyeing technology for denim yarns," Denim: Manufacture, Finishing and Applications, p. 69, 2015.
[9]李茵, "染料废水处理技术的研究进展," 化工时刊, vol. 19, pp. 60-63, 2005.
[10]朱红, "活性碳纤维的吸附机理及其吸附性能研究," 知识经济, pp. 92-92, 2014.
[11]C. S. Lee, J. Robinson, and M. F. Chong, "A review on application of flocculants in wastewater treatment," Process Safety and Environmental Protection, vol. 92, pp. 489-508, 2014.
[12]K. Show and D. Lee, "Anaerobic Treatment Versus Aerobic Treatment," Current Developments in Biotechnology and Bioengineering: Biological Treatment of Industrial Effluents, p. 205, 2016.
[13]曾志勇 and 利锋, "精制棉废水处理工艺研究," 广东化工, vol. 36, pp. 161-162, 2009.
[14]L. M. Hernandez, M. G. Lozano, Y. P. Garcia, R. O. Navarro, and N. Balagurusamy, "Microbiology and Biochemistry of Anaerobic Treatment," Current Developments in Biotechnology and Bioengineering: Biological Treatment of Industrial Effluents, p. 231, 2016.
[15]J. Korhonen, A. Honkasalo, and J. Seppälä, "Circular economy: The concept and its limitations," Ecological Economics, vol. 143, pp. 37-46, 2018.
[16]V. Prieto-Sandoval, C. Jaca, and M. Ormazabal, "Towards a consensus on the circular economy," Journal of Cleaner Production, 2017.
[17]S.-C. Kim, "Application of response surface method as an experimental design to optimize coagulation–flocculation process for pre-treating paper wastewater," Journal of Industrial and Engineering Chemistry, vol. 38, pp. 93-102, 2016.
[18]K. E. Lee, N. Morad, T. T. Teng, and B. T. Poh, "Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review," Chemical Engineering Journal, vol. 203, pp. 370-386, 2012.
[19]O. Amuda and I. Amoo, "Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment," Journal of Hazardous Materials, vol. 141, pp. 778-783, 2007.
[20]M. F. Chong, "Direct flocculation process for wastewater treatment," in advances in water treatment and pollution prevention, ed: Springer, 2012, pp. 201-230.
[21]D. J. Joo, W. S. Shin, J.-H. Choi, S. J. Choi, M.-C. Kim, M. H. Han, et al., "Decolorization of reactive dyes using inorganic coagulants and synthetic polymer," Dyes and Pigments, vol. 73, pp. 59-64, 2007.
[22]T. P. Flaten, "Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water," Brain research bulletin, vol. 55, pp. 187-196, 2001.
[23]J. Bratby, Coagulation and flocculation in water and wastewater treatment: IWA publishing, 2006.
[24]Y. Chen, Y. Wu, D. Wang, H. Li, Q. Wang, Y. Liu, et al., "Understanding the Mechanisms of How Poly Aluminium Chloride Inhibits Short-Chain Fatty Acids Production from Anaerobic Fermentation of Waste Activated Sludge," Chemical Engineering Journal, 2017.
[25]A. Ahmad, S. Wong, T. Teng, and A. Zuhairi, "Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater," Chemical Engineering Journal, vol. 137, pp. 510-517, 2008.
[26]R. P. Singh, G. Karmakar, S. Rath, N. Karmakar, S. Pandey, T. Tripathy, et al., "Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications," Polymer Engineering & Science, vol. 40, pp. 46-60, 2000.
[27]M. Razali, Z. Ahmad, M. Ahmad, and A. Ariffin, "Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation," Chemical Engineering Journal, vol. 166, pp. 529-535, 2011.
[28]陈远学, 徐开未, 何建, and 张鹏, "一种高效复合絮凝剂对多种废水的处理效果," 四川環境, vol. 26, pp. 21-24, 2007.
[29]B. Bolto and J. Gregory, "Organic polyelectrolytes in water treatment," Water research, vol. 41, pp. 2301-2324, 2007.
[30]F. Renault, B. Sancey, P.-M. Badot, and G. Crini, "Chitosan for coagulation/flocculation processes–an eco-friendly approach," European Polymer Journal, vol. 45, pp. 1337-1348, 2009.
[31]M. Özacar and İ. A. Şengil, "Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 229, pp. 85-96, 2003.
[32]J. Kleimann, C. Gehin-Delval, H. Auweter, and M. Borkovec, "Super-stoichiometric charge neutralization in particle− polyelectrolyte systems," Langmuir, vol. 21, pp. 3688-3698, 2005.
[33]F. Sher, A. Malik, and H. Liu, "Industrial polymer effluent treatment by chemical coagulation and flocculation," Journal of Environmental Chemical Engineering, vol. 1, pp. 684-689, 2013.
[34]L. Eriksson, B. Alm, and P. Stenius, "Formation and structure of polystyrene latex aggregates obtained by flocculation with cationic polyelectrolytes: 1. Adsorption and optimum flocculation concentrations," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 70, pp. 47-60, 1993.
[35]J. Li, S. Jiao, L. Zhong, J. Pan, and Q. Ma, "Optimizing coagulation and flocculation process for kaolinite suspension with chitosan," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 428, pp. 100-110, 2013.
[36]E. Guibal and J. Roussy, "Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan)," Reactive and functional polymers, vol. 67, pp. 33-42, 2007.
[37]T. Suopajärvi, H. Liimatainen, O. Hormi, and J. Niinimäki, "Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses," Chemical Engineering Journal, vol. 231, pp. 59-67, 2013.
[38]R. Das, S. Ghorai, and S. Pal, "Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose: An efficient biodegradable flocculant," Chemical engineering journal, vol. 229, pp. 144-152, 2013.
[39]K. Rida, S. Bouraoui, and S. Hadnine, "Adsorption of methylene blue from aqueous solution by kaolin and zeolite," Applied Clay Science, vol. 83, pp. 99-105, 2013.
[40]B. K. Nandi, A. Goswami, and M. K. Purkait, "Adsorption characteristics of brilliant green dye on kaolin," Journal of Hazardous Materials, vol. 161, pp. 387-395, 2009.
[41]刘淑鹏, 张小伟, and 周洪波, "高岭土填料的表面改性及其应用," 矿产保护与利用, pp. 24-29, 2010.
[42]R. B. Geerdink, R. S. van den Hurk, and O. J. Epema, "Chemical oxygen demand: Historical perspectives and future challenges," Analytica Chimica Acta, 2017.
[43]J. Chen, S. Liu, X. Qi, S. Yan, and Q. Guo, "Study and design on chemical oxygen demand measurement based on ultraviolet absorption," Sensors and Actuators B: Chemical, vol. 254, pp. 778-784, 2018.
[44]C. N. Mulligan, N. Davarpanah, M. Fukue, and T. Inoue, "Filtration of contaminated suspended solids for the treatment of surface water," Chemosphere, vol. 74, pp. 779-786, 2009.
[45]B. Nagel, H. Dellweg, and L. Gierasch, "Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992)," Pure and Applied Chemistry, vol. 64, pp. 143-168, 1992.
[46]Z. Wang, H. Wang, T. Zhang, and C. Xu, "Investigation on absorption performance between cement and emulsified asphalt with UV–Vis spectrophotometer," Construction and Building Materials, vol. 136, pp. 256-264, 2017.
[47]F. A. Al Momani and B. Örmeci, "Measurement of polyacrylamide polymers in water and wastewater using an in-line UV–vis spectrophotometer," Journal of Environmental Chemical Engineering, vol. 2, pp. 765-772, 2014.
[48]Q. Zhang, J. Hu, D.-J. Lee, Y. Chang, and Y.-J. Lee, "Sludge treatment: Current research trends," Bioresource Technology, vol. 243, pp. 1159-1172, 2017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top