跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾柏硯
研究生(外文):ZENG,BO-YAN
論文名稱:不同翼型組合之同軸雙旋翼氣動力性能數值研究
論文名稱(外文):Numerical Study on Aerodynamic Performance of Coaxial Rotor with Various Blade Combinations
指導教授:宋齊有方俊方俊引用關係
指導教授(外文):SONG,QI-YOUFANG,JUN
口試委員:宋齊有方俊黃柏文
口試委員(外文):SONG,QI-YOUFANG,JUNHUANG,BO-WEN
口試日期:2018-01-22
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:116
中文關鍵詞:同軸雙旋翼翼型組合升力扭矩
外文關鍵詞:coaxial rotorblade combinationlifttorsion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究以數值模擬計算探討同軸雙旋翼直升機在懸停時,不同旋翼翼型組合所產生的氣動力性能。旋翼組是由上、下各三片葉片所組成。模擬之旋翼模型依尺寸分有小旋翼組與大旋翼組。
小旋翼組部分,組合翼型的葉片翼切形有對稱之NACA0012與非對稱之Viper-X兩大翼型,其中Viper-X又在旋翼的葉尖分成為後掠角0、20與35度這三種翼型。大旋翼組使用了Viper-X翼切形後掠角20與35度兩種,並對其旋翼葉尖再加入10、20與30度的上反角與下反角。
本研究中,使用了ANSYS公司的CFX商用軟體,來進行流場域的模型與網格建構;使用Fluent軟體來進行數值模擬計算,得到流場細部解如升力、扭矩等數值,以評估各式翼型組合。研究結果顯示,對小旋翼組而言,上旋翼為Viper-X葉尖後掠角35度、下旋翼為Viper-X葉尖後掠角20度之組合結果為最佳。大旋翼組中,加入葉尖上反角所得結過不理想,而葉尖下反角的設計以Viper-X葉尖後掠角20度、下反角10度的翼型為較佳設計。

In this study, coaxial rotors with various blade combinations was simulated numerically to study the aerodynamic performance during the hovering. The upper and lower rotors each are composed of three blades. In terms of dimension, two coaxial rotors, small and large, are considered.
For the combination of the small rotor, the blade of the symmetrical airfoil NACA0012 and the asymmetrical airfoil Viper-X are used. While on the blades tip of Viper-X, three sweepback angles, 0, 20 and 35 deg, are applied. For the simulation of large rotor, two sweepback angles of blade-tips, 20 and 35 deg, and dihedral/anhedral angles of 10, 20 and 30 deg are taken into account on the blades of Viper-X airfoil.
In this study, the commercial software of ANSYS-CFX is used to construct grid on the flow field. The Fluent software is used to carry out the numerical simulation for obtaining the data of detailed flow field, lift and torsion, and then evaluation of rotor blade combinations. For the small rotor, the upper rotor of the Viper-X blade of 35 deg tip sweepback combining with the lower rotor of the Viper-X blade of 20 deg tip sweepback is the best in the cases studied. As for the case of large rotor, the results show that the tip dihedral design is not satisfactory. On the contrary, the design of the Viper-X blade of 20 deg tip sweepback and 10 deg anhedral is relatively a better design, among the rotor combinations in the present simulation.

誌謝 I
摘要 II
ABSTRACT III
目錄 V
表目錄 VII
圖目錄 IX
符號說明 XIV
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.3 研究目的 6
第二章 物理模型與計算方程式 8
2.1物理模型 8
2.2統御方程式 9
2.3紊流計算模型 10
第三章 數值方法 27
3.1模擬程序 27
3.2離散方法 30
3.3邊界條件與計算條件 31
3.4收斂準則與鬆弛因子 31
第四章 結果與討論 43
4.1結果驗證 43
4.2小旋翼組的結果與討論 43
4.3大旋翼組的結果與討論 50
第五章 總結 89
5.1總結 89
5.2未來展望 91
參考文獻 96
附錄 98


[1]Coleman, C. P., “A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research,” NASA Technical Paper 3675, March, 1997.
[2]Leishman, J. G., A History of Helicopter Flight, Cambridge University Press. p. 31, 2000.
[3]Lambermont, P., Pirie, A., Helicopters and Autogyros of the World, Barnes, Revised edition., 1970.
[4]Taylor, M., ‘‘A Balsa-Dust Technique for Air-Flow Visualization and Its Application to Flow Through Model Helicopter Rotor in Static Thrust,’’ NACA TN-2200, November, 1950.
[5]Harrington, R. D., ‘‘Full-Scale-Tunnel Investigation of the Static-Thurest Performance of a Coaxial Helicopter Roter,’’ National Advisory committee for aeronautics, TN-2318, March, 1951.
[6]Shi, Y., Zhao, Q., Fan, F., Xu, G., ‘‘A New Single-blade Based Hybrid CFD Method for Hovering and Forward-flight Rotor Computation,’’ Chinese Journal of Aeronautics, Vol. 24, No. 2, pp. 127-135, 2011.
[7]Duraisamy, K., Baeder, J, D., ‘‘High Resolution Wake Capturing Methodology for Hovering Rotors,’’ Journal of the American Helicopter Society, Vol. 52, No. 2, pp. 110-122, 2007.
[8]Barbely, N, L., Komerath, N, M., Novak, L, A., ‘‘A Study of Coaxial Rotor Performance and Flow Field Characteristics,’’ Aeromechanics Design for Vertical Lift, Georgia Institute of Technology, Atlanta United States, 20–22 January 2016.
[9]Xu, H., Ye, Z., ‘‘Numerical Simulation of Unsteady Flow Around Forward Flight Helicopter with Coaxial Rotors,’’ Chinese Journal of Aeronautics, Vol. 24, pp. 1-7, 2011.
[10]Kim, H, W., Brown, R, E., “A Comparison of Coaxial and Conventional Rotor Performance,” Journal of the American Helicopter Society, Vol. 55, pp. 12004, 2010.
[11]Lakshminarayan, V, K., Baeder, J, D., “Computational Investigation of Small Scale Coaxial Rotor Aerodynamics in Hover,” 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009.
[12]宋振宇, “同軸雙旋翼流場特性PIV實驗研究,” 逢甲大學航太與系統工程學系碩士論文, 臺灣台中, January, 2017.
[13]魏裕仁, “同軸雙旋直升機兩旋翼盤間氣動干擾與噪音特性之數值模擬,” 逢甲大學航太與系統工程學系碩士論文, 臺灣台中, July, 2017.
[14]鍾明翰, “同軸雙旋翼載具前進飛行氣動力特性之研究,” 逢甲大學航太與系統工程學系碩士論文, 臺灣台中, August, 2017.
[15]Andrew, N., Ilan, K., “Multidisciplinary Considerations in the Design of Wings and Wing Tip Devices,” Journal of Aircraft, Vol. 47, No. 2, pp. 534-543, 2010.
[16]Gautham, N., Bibin, J., “Effect of Winglets Induced Tip Vortex Structure on The Performance of Subsonic Wings,” Aerospace Science and Technology, Vol. 58, pp.328-340, 2016.
[17]Brocklehurst, A., Barakos , G, N., “A Review of Helicopter Rotor Blade Tip Shapes,” Progress in Aerospace Sciences, Vol. 56, pp.35-74, 2013.
[18]Muller , R., “The Influence of Winglets on Rotor Aerodynamics,” Vertica, Vol. 11, No.4, pp.601-618, 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top