(3.236.82.241) 您好!臺灣時間:2021/04/13 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃傳騰
研究生(外文):Huang,Chuan-Teng
論文名稱:永磁同步電動機滑動模式觀測器磁場導向控制設計與實踐
論文名稱(外文):Permanent Magnet Synchronous Motor Sliding Mode Observer Design and Practice of Magnetic Field Guidance Control
指導教授:黃思倫黃思倫引用關係
指導教授(外文):Huang,Sy-Ruen
口試委員:黃思倫王孟輝陳鴻誠
口試委員(外文):Huang,Sy-RuenWang,Meng-huiChen,Hong-cheng
口試日期:2018-06-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:81
中文關鍵詞:磁場導向控制滑動模式觀測器
外文關鍵詞:field-oriented ControlSliding Mode Observer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對永磁同步馬達其驅動作設計,並做分析及探討。平滑、穩定、無干擾,一直是我們期望的控制目標,然而在實踐的過程,卻很容易受到外界擾動之影響,為了減少干擾本論文使用滑動模式觀測並使用此方法算出了較精確的向量值,滑動模式對於干擾引響較低,但滑動模式觀測容易受到增益過大的影響,所以本論文採用比例-積分-微分控制器(PID)防止其現象。
馬達設計包含了磁場導向控制、空間向量脈波寬度調變、開迴路控制、比例-積分-微分控制器,論文中使用磁場導向控制,控制其轉矩與磁通,提供更快的動態響應。運用磁場導向控制時不會有轉矩漣波,且在速度控制下能達到流暢、準確的馬達控制。本文介紹了使用TMS320F28035控制永磁同步電機,這款DSP可實現經濟高效的無刷電機智能控制器設計,更低的系統成本和更高的性能。並減少對磁場導向控制的需要時間更精確的控制馬達向量之角度。

The purpose of thesis is to research the design of the permanent magnet synchronous motor (PMSM) and do the analysis. Our expectation of control objective has always been smooth, stable, non-interfering, whereas in the carry out of the process which is easily affected by external disturbance. To reduce the interference, thereby using of Sliding-Mode Observation in this paper and also calculating more accurate vector value. The Sliding-Mode is less affected by the interference, while Sliding-Mode Observation is more easily affected by gain of the excessive. Thus, this paper adopts the Proportional-Integral-Derivative (PID) controller to prevent its phenomenon.
The motor design includes Field-Oriented Control (FOC), Space Vector Pulse Width Modulation (SVPWM), open-loop control, Proportional-Integral-Derivative (PID) controller. This study has been conducted in applying the FOC to control its torque and magnetic flux, which provides faster dynamic response. There is no torque ripple when using FOC and able to reach smooth and accuracy of the motor control under the control of speed. This paper presents the use of TMS320F28035 control PMSM; this DSP can achieve cost-effective brushless motor intelligent controller design, lower system costs and higher performance. Meanwhile, it reduces the required time of FOC and control the angle of the motor vector more accurately.

摘 要 i
Abstract ii
致謝 iii
目 錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3文獻探討 2
1.4論文章節架構 6
第二章 系統架構及轉換器設計及原理 7
2.1常見電機介紹 7
2.2永磁同步電機特性介紹 9
2.3永磁同步電機模型 11
2.4永磁同步電機主導方程式 13
第三章 系統控制理論 23
3.1 純量控制 23
3.1.1 六步方波(120度) 23
3.1.2 六步方波(180度) 30
3.1.3空間向量脈波寬度調變空間向量調變 35
3.2向量控制 40
3.2.1 CLARKE轉換 42
3.2.2 PARK轉換 43
3.2.3 PID控制器 44
3.2.4 PARK反轉換 46
3.2.5 Clarke反轉換 47
3.2.6 滑動模式觀測器 48
第四章 控制電路硬體設計架構 51
4.1 驅動控制器CPU 53
4.2 閘極驅動電路 58
4.3 電流感測器 60
第五章 系統實驗說明與分析 65
5.1 實驗說明 65
5.2 FOC磁場導向控制 72
第六章 結論與未來展望 76
6.1結論 76
6.2未來展望 76
參考文獻 78

[1]G. Narayanan V. T. Ranganathan "Synchronised PWM strategies based on space vector approach. i. principles of waveform generation",IEE Proceedings - Electric Power Applications. 146 no. 3 pp. 267-275 May 1999.
[2]G. Narayanan V. T. Ranganathan "Synchronised PWM strategies based on space vector approach. ii. performance assessment and application to vlf drives" IEE Proceedings - Electric Power Applications. 146 no. 3 pp. 276-281 May 1999.
[3]R. Chaiyot, V. Kinnares, "Continuous and Discontinuous space vector pulsewidth modulator using a TMS320C2000 F28335 Board",in ECTI-CON; 2016, chiangmai. Thailand:, June 28-July 2016.
[4]D.G. Holmes, "The significance of zero space vector placement for Carrier-Based PWM scheme", IEEE Trans on Ind. Applicat, vol. 32, no. 5, September/October 1996.
[5]Thurston Robert, Legowski Stanislaw, "A Simple and Accurate Method of Computing Average and RMS Currents",in a Three-Phase PWM Inverter", IEEE Transactions on Power Electronics, vol. 8, no. 2, April 1993.
[6]S Chi, Z Zhang, L. Xu, "Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications", IEEE Trans. Ind. Appl, vol. 45, no. 2, pp. 582-590, 2009.
[7]K W Lee, S Park, S. Jeong, "A seamless transition control of sensorless PMSM compressor drives for improving efficiency based on a dual-mode operation", IEEE Trans. Power Electron, vol. 30, no. 3, pp. 1446-1456, 2015.
[8]P Sergeant, F De Belie, J. Melkebeek, "Rotor geometry design of interior PMSMs with and without flux barriers for more accurate sensorless control", IEEE Trans. Ind. Electron, vol. 59, no. 6, pp. 2457-2465, 2012.
[9]M. Comanescu, “Design of a MRAS-based estimator for the speed and rotor time constant of the induction motor using sliding mode,” 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016, pp. 740–745.
[10]X. Zhang and Z. Li, “Sliding-Mode Observer-Based Mechanical Parameter Estimation for Permanent Magnet Synchronous Motor,” in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5732–5745, Aug. 2016.
[11]H. J. Guo, S. Sagawa, T. Watanabe and O. Ichinokura, “Sensorless driving method of permanent-magnet synchronous motors based on neural networks,” IEEE Trans. On Magnetics, Vol. 39, No. 5, September 2003, pp. 3247-3249.
[12]R. B. Sepe and J. H. Lang, “Real-time observer-based (adaptive) control of apermanent-magnet synchronous motor without mechanical sensors,” IEEE Trans. on Industry Applications, Vol. 28, No. 6, November/December 1992, pp. 1345-1352.
[13]Tiantian Sheng, Xiaolin Wang, Julia Zhang, and Zhiquan Deng,“Torque-
Ripple Mitigation for Brushless DC Machine Drive System Using One-
Cycle Average Torque Control,” IEEE Trans. Ind. Appl., vol. 62, no. 4,
pp. 2114-2122, April 2015.
[14]K. Kang, J. Kim, K.-B. Hwang, and K.-H. Kim, “Sensorless control of PMSM in high speed range with iterative sliding mode observer,” in Conf. Rec. IEEE APEC, 2004, vol. 2, pp. 1111–1116.
[15]Z. Zhang, H. Xu, L. Xu, and L. E. Heilman, “Sensorless direct field- oriented control of three-phase induction motors based on ‘sliding mode’ for washing-machine drive applications,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 694–701, May/Jun. 2006.

電子全文 電子全文(網際網路公開日期:20230627)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔