|
[1] I. De Michelis, F. Ferella, E. F. Varelli, F. Veglio, Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analysis, Waste Management, 31(2011)2559-2568. [2] L. Pietrelli, B. Bellomo, D. Fontana, M. R. Montereali, Rare earths recovery from NiMH spent batteries. Hydrometallurgy, 66(2001)135-139. [3] M. A. Rabah, Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps, Waste Management, 28(2008)318-325. [4] S. Massari, M. Ruberti, Rare earth elements as critical raw materials: Focus on international markets and future strategies, Resources Policy, 38(2013)36-43. [5] Y. Kanazawa, M. Kamitani, Rare earth minerals and resources in the world, J. Alloys Compd. 408(2006)1339-1343. [6] Y. Jiang, A. Shibayama, K. Liu, T. Fujita, A hydrometallurgical process for extraction of lanthanum - yttrium and gadolinium from spent optical glass, Hydrometallurgy, 76(2005)1-9. [7] L. V. Resende, C. A. Morais, Study of the recovery of rare earth elements from computer monitor scraps-leaching experiments, Minerals Eng., 23(2010)277-280. [8] U.S. Geological Survey, Mineral Commodity Summaries, Virginia, US, 2016. [9] 李清華, 秦丘翰, 蔡尚林, 林明德, 陳慧憶, 吳彥翬, 廢映像管螢光粉之資源再生方法, 中華民國專利, I200916552。 [10] R. Shimizu, K. Sawada, Y. Enokida, I. Yamamoto, Supercritical fluid extraction of rare earth elements from luminescent material ino waste fluorescent lamps, J. Supercritical Fluides, 33(2005)235-241. [11] T. Hirajima, K. Sasaki, A. Bissombolo, H. Hirai, M. Hamada, M. Tsunekawa, Feasibility of an efficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation, Sep. Purif. Tech., 44(2005)197-204. [12] V. Innocenzi, I. De Michelis, F. Ferella, F. Beolchini, B. Kopacek, F. Vegliò, Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation, Waste Manage. 33 (2013) 2364–2371. [13] H. Liu, S. Zhang, D. Pan, J. Tian, M. Yang, M. Wu, A. Volinsky, Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution, J. Hazardous Mater. 272 (2014) 96–101. [14] L. Resende, C. Morais, Study of the recovery of rare earth elements from computer monitor scraps – leaching experiments, Miner. Eng. 23 (2010) 277–280. [15] Y. H. Ju, L. H. Huynh, Y. A. Tsigie, Q. P. Ho, Synthesis of biodiesel in subcritical water and methanol, Fuel, 105(2013)266-271. [16] Z. M. Alghoul, P. B. Oden, J. G. Dorsey, Characterization of the polarity of subcritical water, J. Chromatography A, 1486(2017)42-49. [17] G.J. Bignold, A.D. Brewer, B. Hearn, Specific conductivity and ionic product of water between 50 and 271 ℃, Trans. Faraday Soc. 67 (1971) 2419–2430. [18] K. Chandler, F. Deng, A.K. Dillow, C.L. Liotta, C.A. Eckert, Alkylation reactions innear-critical water in the absence of acid catalysts, Ind. Eng. Chem. Res. 36(1997) 5175–5179. [19] E. Y. Lin, A. Rahmawati, J. H. Ko, J. C. Lin, Extraction of yttrium and europium from waste cathode-ray tube (CRT) phosphor by subcritical water, Sep. Purif. Tech., 192(2018)166-175. [20] V. Innocenzi, I. De Michelis, F. Ferella, F. Veglio, Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation, Waste Manage., 33(2013)2390-2396. [21] Rezende, M.V. dos S., Valerio, M.E.G. and Jackson, R.A., Study of Eu3+→Eu2+ reduction in BaAl2O4:Eu prepared in different gas atmospheres, Mater. Res. Bull. 61, 348-351, 2015. [22] Ivakin, Yu. D., Danchevskaya, M. N., Muravieva, G. P. and Kreisberg, V. A., Synthesis of Eu-doped gahnite in water and water-ammoniac fluids, J. Supercritical Fluids, 42, 425-429, 2007. [23] Ollier, N., Concas, G., Panczer, G., Champagnon, B. and Charpentier, T., Structural features of a Eu3+ doped nuclear glass and gels obained from glass leaching. J. Non-crystalline Solids, 328, 207-214, 2003. [24] Sun, L., Yao, J., Liu, C., Liao, C. and Yan, C., Rare earth activated nanosized oxide phosphors: synthesis and optical properties, J. Lumin. 87, 447-450, 2000.
|