跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾湘婷
研究生(外文):ZENG, XIANG-TING
論文名稱:輔酶Q10對慢性腎臟病模式之雄鼠睪丸氧化壓力及造精功能之影響
論文名稱(外文):Coenzyme Q10 ameliorates testicular oxidative stress and improves spermatogenesis function in male mice model of chronic kidney disease
指導教授:劉沁瑜劉沁瑜引用關係
指導教授(外文):LIU, CHIN-YU
口試委員:林士祥許育瑞曹智惟
口試委員(外文):LIN, SHYH-HSIANGHSU, YU-JUEITSAO, CHIH-WEI
口試日期:2018-07-09
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:81
中文關鍵詞:輔酶Q10慢性腎臟病氧化壓力造精功能男性不孕
外文關鍵詞:coenzyme Q10chronic kidney diseaseoxidative stressspermatogenesis functionmale infertility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:469
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  研究發現第三期和第四期慢性腎臟病(chronic kidney disease, CKD)男性患者有53%具性腺功能低下症(hypogonadism),為男性不孕重要因素。在CKD患者中發現,其體內氧化壓力較正常人高,而氧化壓力過高則可能造成生殖細胞受損、睪丸細胞發炎反應及細胞凋亡等等,進而影響睪固酮生合成及精子生成。睪固酮生合成路徑中需經粒線體以合成睪固酮,而輔酶Q10主要作用於粒線體中的一種抗氧化劑。因此,本研究欲探討輔酶Q10對慢性腎臟病睪丸氧化壓力及生殖功能之影響。實驗選用9週齡C57BL/6雄性小鼠,隨機分為正常控制組(NC組)、假手術玉米油組(SC組)、腎衰竭玉米油組(CC組)、假手術輔酶Q10組(SQ組)和腎衰竭輔酶Q10組(CQ組),以5/6腎切除手術誘發腎衰竭,輔酶Q10則溶於玉米油中,以管餵方式連續給予輔酶Q10 (10 mg/kg/day)8週後犧牲。實驗結果顯示,CC組血清及睪丸組織中輔酶Q10濃度顯著較SC組低,CQ組則顯著高於CC組;睪固酮生合成路徑中,CC組的StAR蛋白表現量顯著低於SC組,而CQ組則顯著高於CC組;睪丸組織中發現,補充輔酶Q10可以改善CKD所造成細胞形態的不成熟;在精子品質方面,CC組的精子數量、活動力及正常形態皆顯著低於SC組,CQ組則顯著高於CC組;此外,CQ組之Glutathione peroxidase及Catalase活性皆顯著較CC組高。綜上所述,輔酶Q10可以增加睪固酮生合成路徑中StAR蛋白表現量、抗氧化酵素GPx及CAT活性,且給予輔酶Q10補充後可以改善CKD所造成的精液品質下降及小鼠睪丸組織之細胞形態不成熟。
The study showed that 53% of male patients with chronic kidney disease (CKD) stages 3-4 had hypogonadism which is one of the important factors for male infertility. In CKD patients, oxidative stress may increase, which may cause germ cells damaged, testicular inflammation, and apoptosis. They may affect testosterone biosynthesis and spermatogenesis and thus reduce the reproductive function. In the testosterone biosynthesis pathway, cholesterol is converted to progesterone in mitochondria to synthesis testosterone. Coenzyme Q10 mainly acts as an antioxidant in mitochondria. Therefore, the aim of this study is to explore the effect of coenzyme Q10 on testicular oxidative stress and reproductive function in the chronic kidney disease. Nine-week-old C57BL/6 male mice were randomly divided into five groups: normal control group (NC group), sham-operated group received corn oil (SC group), sham-operated group received coenzyme Q10 (SQ group), the CKD-operated group received corn oil (CC group) and the CKD-operated group received coenzyme Q10 (CQ group). Chronic kidney disease was induced by 5/6 nephrectomy and the coenzyme Q10 was dissolved in corn oil fed by gavage. After eight weeks feeding, mice were sacrificed. The results showed that the concentration of coenzyme Q10 both in serum and testis were decreased in the CC group, and increased in the CQ group. In testosterone biosynthesis pathway, steroidogenic acute regulatory (StAR) protein expression was decreased in the CC group and increased in the CQ group. The immaturity of testicular cells and poor sperm quality of CKD mice also improved after eight-week coenzyme Q10 feeding. In addition, glutathione peroxidase (GPx) and catalase (CAT) activity could increase in the CQ group. In summary, CKD mice with coenzyme Q10 supplement ation have increased StAR protein expression in testosterone biosynthesis pathway, antioxidant activity, better sperm quality and the testicular cells morphology than CKD mice without coenzyme Q10 feeding.
目錄
第一章 研究動機 - 10 -
第二章 文獻回顧 - 12 -
第一節 慢性腎臟病簡介 - 12 -
一、 慢性腎臟疾病的近況和盛行率 - 12 -
二、 腎臟的生理功能 - 12 -
三、 慢性腎臟病的致病機制及危險因子 - 15 -
四、 慢性腎臟病分期 - 17 -
五、 現今治療方法及限制 - 18 -
六、 誘發慢性腎臟病之動物模式 - 19 -
第二節 男性不孕症簡介 - 20 -
一、 男性不孕症之盛行率 - 20 -
二、 男性不孕之原因與臨床治療 - 20 -
第三節 睪固酮生合成之影響因素 - 22 -
一、 睪固酮生合成路徑 - 22 -
二、 睪固酮的生理功能 - 23 -
第四節 精子生成之影響因素 - 25 -
一、 精子生成之過程與分期 - 25 -
二、 精子生成之影響因素 - 26 -
第五節 慢性腎臟病與男性不孕症之關係 - 28 -
第六節 輔酶Q10介紹 - 29 -
一、 輔酶Q10結構、生理代謝及生理功能 - 29 -
二、 輔酶Q10與粒線體生合成 - 33 -
三、 輔酶Q10對慢性腎臟病的影響 - 34 -
四、 輔酶Q10對男性生殖的影響 - 35 -
第三章 研究目的 - 36 -
第四章 材料與方法 - 37 -
第一節 實驗設計 - 37 -
第二節 實驗動物及其飼料組成 - 37 -
第三節 實驗動物樣品採集與處理 - 39 -
第四節 樣品分析 - 41 -
第五節 統計方法 - 47 -
第五章 結果 - 48 -
第一節 慢性腎臟病與輔酶Q10補充對小鼠體重及攝食量之影響 - 48 -
第二節 慢性腎臟病與輔酶Q10補充對小鼠睪丸、副睪、輸精管重量
  之影響 - 49 -
第三節 慢性腎臟病與輔酶Q10補充對小鼠血液生化值之影響 - 49 -
第四節 慢性腎臟病與輔酶Q10補充對小鼠睪丸組織中輔酶Q10濃度
  之影響 - 50 -
第五節 慢性腎臟病與輔酶Q10補充對小鼠睪丸組織形態之影響 - 50 -
第六節 慢性腎臟病與輔酶Q10補充對小鼠精液品質之影響 - 50 -
第七節 慢性腎臟病與輔酶Q10補充對小鼠睪丸睪固酮生合成相關蛋白質
  表現之影響 - 51 -
第八節 慢性腎臟病與輔酶Q10補充對小鼠睪丸抗氧化酵素活性
  之影響 - 51 -
第九節 慢性腎臟病與輔酶Q10補充對小鼠睪丸粒線體生合成相關蛋白質
  表現之影響 - 52 -
第六章 討論 - 53 -
第一節 慢性腎臟病與輔酶Q10補充對小鼠體重及攝食量之影響 - 53 -
第二節 慢性腎臟病與輔酶Q10補充對小鼠臟器重量之影響 - 54 -
第三節 慢性腎臟病與輔酶Q10補充對小鼠血液及睪丸組織中輔酶Q10
  濃度之影響 - 54 -
第四節 慢性腎臟病與輔酶Q10補充對小鼠精液品質及精子生成之影響 - 55 -
第五節 慢性腎臟病與輔酶Q10補充對小鼠睪固酮濃度及睪固酮生合成
  之影響 - 56 -
第六節 慢性腎臟病與輔酶Q10補充對小鼠睪丸抗氧化能力之影響 - 57 -
第七節 慢性腎臟病與輔酶Q10補充對小鼠粒線體生合成之影響 - 58 -
第八節 研究限制與未來展望 - 60 -
第七章 結論 - 62 -
參考文獻 - 63 -

表目錄
表一、慢性腎臟病與輔酶Q10補充對小鼠之體重之影響 - 70 -
表二、慢性腎臟病與輔酶Q10補充對小鼠之攝食量、飲水量之影響 - 71 -
表三、慢性腎臟病與輔酶Q10補充對小鼠之睪丸、副睪、輸精管重量之影響 - 72 -
表四、慢性腎臟病與輔酶Q10補充對小鼠血液生化值之影響 - 73 -
表五、慢性腎臟病與輔酶Q10補充對小鼠睪丸組織中輔酶Q10之影響 - 74 -
表六、慢性腎臟病與輔酶Q10補充對小鼠精液品質之影響 - 77 -
表七、慢性腎臟病與輔酶Q10補充對小鼠睪丸抗氧化酵素活性之影響 - 80 -

圖目錄
圖一、慢性腎臟病與輔酶Q10補充對小鼠睪丸組織H&E染色之影響 - 75 -
圖二、慢性腎臟病與輔酶Q10補充對小鼠睪丸組織MSTD及MTBS之影響 - 76 -
圖三、慢性腎臟病與輔酶Q10補充對小鼠睪丸睪固酮生合成相關蛋白質
之表現 - 78 -
圖四、慢性腎臟病與輔酶Q10補充對小鼠睪丸睪固酮生合成相關蛋白質
之定量結果 - 79 -
圖五、慢性腎臟病與輔酶Q10補充對小鼠睪丸粒線體生合成相關蛋白質
之表現 - 81 -
圖六、慢性腎臟病與輔酶Q10補充對小鼠睪丸粒線體生合成相關蛋白質
之定量結果 - 82 -



1.CDC, American National Health and Nutrition Examination Survey. 2014.
2.Hill, N.R., et al., Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One, 2016. 11(7): p. e0158765.
3.衛生福利部, 104年死因統計結果分析. 2016.
4.USRDS, 2015 USRDS Annual Data Report. 2015.
5.Yang, M., et al., Complications of progression of CKD. Adv Chronic Kidney Dis, 2011. 18(6): p. 400-5.
6.Blaine, J., M. Chonchol, and M. Levi, Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol, 2015. 10(7): p. 1257-72.
7.Koeppen, B.M., Renal Regulation of Acid-Base Balance. Am J Kidney Dis, 1998. 20: p. 132-141.
8.Al-Mutairi, N., B.I. Issa, and V. Nair, Photoprotection and vitamin D status: a study on awareness, knowledge and attitude towards sun protection in general population from Kuwait, and its relation with vitamin D levels. Indian J Dermatol Venereol Leprol, 2012. 78(3): p. 342-9.
9.Erslev, A.J. and A. Besarab, Erythropoietin in the pathogenesis and treatment of the anemia of chronic renal failure. Kidney Int, 1997. 51(3): p. 622-30.
10.Rossier, B.C., Hypertension finds a new rhythm. Nat Med, 2010. 16(1): p. 27-8.
11.Triplitt, C.L., Understanding the kidneys' role in blood glucose regulation. Am J Manag Care, 2012. 18(1 Suppl): p. S11-6.
12.Wong, E., Chronic kidney disease (CKD) Sultan Chaudhry. The New England Journal of Medicine, 2012. 14: p. 165-80.
13.Song, E.Y., et al., Effect of community characteristics on familial clustering of end-stage renal disease. Am J Nephrol, 2009. 30(6): p. 499-504.
14.Neugarten, J., A. Acharya, and S.R. Silbiger, Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol, 2000. 11(2): p. 319-29.
15.Iseki, K., Factors influencing the development of end-stage renal disease. Clin Exp Nephrol, 2005. 9(1): p. 5-14.
16.Epstein, M., Aging and the kidney. J Am Soc Nephrol, 1996. 7(8): p. 1106-22.
17.Barigye, O., Smoking and Inflammation. PLOS Medicine, 2005. 2(6): p. e198.
18.Orth, S.R., et al., Effects of smoking on renal function in patients with type 1 and type 2 diabetes mellitus. Nephrol Dial Transplant, 2005. 20(11): p. 2414-9.
19.Nasri, H. and M. Rafieian-Kopaei, Diabetes mellitus and renal failure: Prevention and management. J Res Med Sci, 2015. 20(11): p. 1112-20.
20.Klag, M.J., et al., Blood pressure and end-stage renal disease in men. N Engl J Med, 1996. 334(1): p. 13-8.
21.Kasiske, B.L., et al., A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis, 1998. 31(6): p. 954-61.
22.Fouque, D. and M. Laville, Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev, 2009(3): p. Cd001892.
23.財團法人國家衛生研究院, 2015臺灣慢性腎臟病臨床診療指引專書. 2015.
24.Maschio, G., et al., Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med, 1996. 334(15): p. 939-45.
25.Strippoli, G.F., et al., Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev, 2006(4): p. Cd006257.
26.衛生福利部, 2014 臺灣腎病年報. 2014.
27.Goldstein, R.S., J.B. Tarloff, and J.B. Hook, Age-related nephropathy in laboratory rats. Faseb j, 1988. 2(7): p. 2241-51.
28.Dickie, P., et al., HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology, 1991. 185(1): p. 109-19.
29.Yang, H.-C., Y. Zuo, and A.B. Fogo, Models of chronic kidney disease. Drug Discovery Today: Disease Models, 2010. 7(1): p. 13-19.
30.Zegers-Hochschild, F., et al., International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril, 2009. 92(5): p. 1520-4.
31.Mascarenhas, M.N., et al., National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med, 2012. 9(12): p. e1001356.
32.Direkvand-Moghadam, A., et al., The global trend of infertility: an original review and meta-analysis. International Journal of Epidemiologic Research, 2014. 1(1): p. 35-43.
33.Agarwal, A., et al., A unique view on male infertility around the globe. Reprod Biol Endocrinol, 2015. 13: p. 37.
34.Jose-Miller, A.B., J.W. Boyden, and K.A. Frey, Infertility. Am Fam Physician, 2007. 75(6): p. 849-56.
35.Olayemi, F.O., A review on some causes of male infertility. African Journal of Biotechnology, 2010. 9(20): p. 2834-2842.
36.Baazeem, A., et al., Varicocele and male factor infertility treatment: a new meta-analysis and review of the role of varicocele repair. Eur Urol, 2011. 60(4): p. 796-808.
37.Ley, S.B. and J.M. Leonard, Male hypogonadotropic hypogonadism: factors influencing response to human chorionic gonadotropin and human menopausal gonadotropin, including prior exogenous androgens. J Clin Endocrinol Metab, 1985. 61(4): p. 746-52.
38.Garolla, A., et al., Oral carnitine supplementation increases sperm motility in asthenozoospermic men with normal sperm phospholipid hydroperoxide glutathione peroxidase levels. Fertil Steril, 2005. 83(2): p. 355-61.
39.Safarinejad, M.R., Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. J Urol, 2009. 182(1): p. 237-48.
40.Akmal, M., et al., Improvement in human semen quality after oral supplementation of vitamin C. J Med Food, 2006. 9(3): p. 440-2.
41.Keskes-Ammar, L., et al., Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl, 2003. 49(2): p. 83-94.
42.Shalet, S.M., Normal testicular function and spermatogenesis. Pediatr Blood Cancer, 2009. 53(2): p. 285-8.
43.Stojkov, N.J., et al., Sustained in vivo blockade of alpha(1)-adrenergic receptors prevented some of stress-triggered effects on steroidogenic machinery in Leydig cells. Am J Physiol Endocrinol Metab, 2013. 305(2): p. E194-204.
44.Valenti, D., et al., Follicle-stimulating hormone treatment in normogonadotropic infertile men. Nat Rev Urol, 2013. 10(1): p. 55-62.
45.Bachman, E., et al., Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci, 2014. 69(6): p. 725-35.
46.Griggs, R.C., et al., Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol (1985), 1989. 66(1): p. 498-503.
47.Roth, M.Y., J.K. Amory, and S.T. Page, Treatment of male infertility secondary to morbid obesity. Nat Clin Pract Endocrinol Metab, 2008. 4(7): p. 415-9.
48.Koeppen, B.M. and B.A. Stanton, Berne & Levy Physiology, 6th Updated Edition. 2010.
49.Kapoor, D., et al., Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care, 2007. 30(4): p. 911-7.
50.Hermo, L., et al., Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech, 2010. 73(4): p. 241-78.
51.Heller, C.G. and Y. Clermont, Spermatogenesis in man: an estimate of its duration. Science, 1963. 140(3563): p. 184-6.
52.Creasy, D.M., Evaluation of testicular toxicity in safety evaluation studies: the appropriate use of spermatogenic staging. Toxicol Pathol, 1997. 25(2): p. 119-31.
53.Neto, F.T., et al., Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol, 2016. 59: p. 10-26.
54.Hogarth, C.A. and M.D. Griswold, The key role of vitamin A in spermatogenesis. J Clin Invest, 2010. 120(4): p. 956-62.
55.Holdcraft, R.W. and R.E. Braun, Hormonal regulation of spermatogenesis. Int J Androl, 2004. 27(6): p. 335-42.
56.Wong, W.Y., et al., Male factor subfertility: possible causes and the impact of nutritional factors. Fertil Steril, 2000. 73(3): p. 435-42.
57.Omu, A.E., et al., Molecular basis for the effects of zinc deficiency on spermatogenesis: An experimental study in the Sprague-dawley rat model. Indian J Urol, 2015. 31(1): p. 57-64.
58.Behne, D., H. Weiler, and A. Kyriakopoulos, Effects of selenium deficiency on testicular morphology and function in rats. J Reprod Fertil, 1996. 106(2): p. 291-7.
59.Seminara, S.B., et al., Genetics of hypogonadotropic hypogonadism. J Endocrinol Invest, 2000. 23(9): p. 560-5.
60.Babitt, J.L. and H.Y. Lin, Mechanisms of Anemia in CKD. J Am Soc Nephrol, 2012. 23(10): p. 1631-4.
61.Arnold, R., et al., Neurological complications in chronic kidney disease. JRSM Cardiovasc Dis, 2016. 5: p. 2048004016677687.
62.Iglesias, P., J.J. Carrero, and J.J. Diez, Gonadal dysfunction in men with chronic kidney disease: clinical features, prognostic implications and therapeutic options. J Nephrol, 2012. 25(1): p. 31-42.
63.Handelsman, D.J. and P.Y. Liu, Androgen therapy in chronic renal failure. Baillieres Clin Endocrinol Metab, 1998. 12(3): p. 485-500.
64.Khurana, K.K., et al., Serum testosterone levels and mortality in men with CKD stages 3-4. Am J Kidney Dis, 2014. 64(3): p. 367-74.
65.Carrero, J.J., et al., Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant, 2011. 26(1): p. 184-90.
66.Bello, A.K., et al., Serum testosterone levels and clinical outcomes in male hemodialysis patients. Am J Kidney Dis, 2014. 63(2): p. 268-75.
67.Rodriguez-Acuna, R., E. Brenne, and F. Lacoste, Determination of coenzyme Q10 and Q9 in vegetable oils. J Agric Food Chem, 2008. 56(15): p. 6241-5.
68.Tran, M.T., et al., Role of coenzyme Q10 in chronic heart failure, angina, and hypertension. Pharmacotherapy, 2001. 21(7): p. 797-806.
69.BOREKOVÁ, M., et al., Nourishing and Health Benefits of Coenzyme Q10 -a review. Czech J. Food Sci., 2008. 26(4): p. 229–241.
70.Chow, C.K., Dietary coenzyme Q10 and mitochondrial status. Methods in Enzymology, 2004. 382: p. 105-112.
71.Ernster, L. and G. Dallner, Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta, 1995. 1271(1): p. 195-204.
72.Bhagavan, H.N. and R.K. Chopra, Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res, 2006. 40(5): p. 445-53.
73.Lenaz, G., et al., The function of coenzyme Q in mitochondria. Clin Investig, 1993. 71(8 Suppl): p. S66-70.
74.Al Ghouleh, I., et al., Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med, 2011. 51(7): p. 1271-88.
75.Kalen, A., et al., Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis, in the endoplasmic reticulum-Golgi system of rat liver. J Biol Chem, 1990. 265(2): p. 1158-64.
76.Ernster, L. and P. Forsmark-Andree, Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig, 1993. 71(8 Suppl): p. S60-5.
77.Benit, P. and P. Rustin, Changing the diet to make more mitochondria and protect the heart. Circ Res, 2012. 110(8): p. 1047-8.
78.Cordero, M.D., et al., Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia? Antioxid Redox Signal, 2013. 19(12): p. 1356-61.
79.Hargreaves, I.P., Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol, 2014. 49: p. 105-11.
80.Himmelfarb, J. and R.M. Hakim, Oxidative stress in uremia. Curr Opin Nephrol Hypertens, 2003. 12(6): p. 593-8.
81.Yeung, C.K., et al., Coenzyme Q10 dose-escalation study in hemodialysis patients: safety, tolerability, and effect on oxidative stress. BMC Nephrol, 2015. 16: p. 183.
82.Behling, E.B., et al., Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol Rep, 2006. 58(4): p. 526-32.
83.Locatelli, F., et al., Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant, 2003. 18(7): p. 1272-80.
84.Schmelzer, C., et al., Effects of Coenzyme Q10 on TNF-alpha secretion in human and murine monocytic cell lines. Biofactors, 2007. 31(1): p. 35-41.
85.Upaganlawar, A., et al., Modification of biochemical parameters of gentamicin nephrotoxicity by coenzyme Q10 and green tea in rats. Indian J Exp Biol, 2006. 44(5): p. 416-8.
86.Fouad, A.A., et al., Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice. Toxicology, 2010. 274(1-3): p. 49-56.
87.Desai, N., et al., Free radical theory of aging: implications in male infertility. Urology, 2010. 75(1): p. 14-9.
88.Aitken, R.J., J.S. Clarkson, and S. Fishel, Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod, 1989. 41(1): p. 183-97.
89.Showell, M.G., et al., Antioxidants for male subfertility. Cochrane Database Syst Rev, 2011(1): p. Cd007411.
90.Sheweita, S.A., A.M. Tilmisany, and H. Al-Sawaf, Mechanisms of male infertility: role of antioxidants. Curr Drug Metab, 2005. 6(5): p. 495-501.
91.Bykova, M., et al., Defining the reference value of seminal reactive oxygen species in a population of infertile men and normal healthy volunteers. Fertility and Sterility, 2007. 88, Supplement 1: p. S305.
92.Mancini, A., et al., Effects of testosterone on antioxidant systems in male secondary hypogonadism. J Androl, 2008. 29(6): p. 622-9.
93.Ghanbarzadeh, S., et al., Effects of L-carnitine and coenzyme q10 on impaired spermatogenesis caused by isoproterenol in male rats. Drug Res (Stuttg), 2014. 64(9): p. 449-53.
94.Lafuente, R., et al., Coenzyme Q10 and male infertility: a meta-analysis. J Assist Reprod Genet, 2013. 30(9): p. 1147-56.
95.Gava, A.L., et al., Effects of 5/6 nephrectomy on renal function and blood pressure in mice. Int J Physiol Pathophysiol Pharmacol, 2012. 4(3): p. 167-73.
96.Gonzales, G.F. and M. Zapana, Sperm motility should be assessed in fresh sperm and after a sperm washing procedure. Arch Androl, 1992. 28(2): p. 83-9.
97.Johnsen, S.G., Testicular biopsy score count--a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones, 1970. 1(1): p. 2-25.
98.Flurkey, K., J. Currer, and D. Harrison, The Mouse in Aging Research. The Mouse in Biomedical Research 2nd Edition, 2007.
99.Cosentino, M.J. and A.T. Cockett, Structure and function of the epididymis. Urol Res, 1986. 14(5): p. 229-40.
100.Koslov, D.S. and K.E. Andersson, Physiological and pharmacological aspects of the vas deferens-an update. Front Pharmacol, 2013. 4: p. 101.
101.Elmberger, P.G., et al., In vitro and in vivo synthesis of dolichol and other main mevalonate products in various organs of the rat. Eur J Biochem, 1987. 168(1): p. 1-11.
102.Kalen, A., et al., Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim Biophys Acta, 1987. 926(1): p. 70-8.
103.Lippa, S., et al., Coenzyme Q10 levels, plasma lipids and peroxidation extent in renal failure and in hemodialytic patients. Mol Aspects Med, 1994. 15 Suppl: p. s213-9.
104.Xu, L.G., et al., Examination of the semen quality of patients with uraemia and renal transplant recipients in comparison with a control group. Andrologia, 2009. 41(4): p. 235-40.
105.Annuk, M., et al., Oxidative stress and endothelial function in chronic renal failure. J Am Soc Nephrol, 2001. 12(12): p. 2747-52.
106.Shayakhmetova, G.M., et al., Chronic alcoholism-mediated metabolic disorders in albino rat testes. Interdiscip Toxicol, 2014. 7(3): p. 165-72.
107.Nadjarzadeh, A., et al., Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double-blind randomised clinical trial. Andrologia, 2014. 46(2): p. 177-83.
108.Reddy, M.M., et al., Bacterial lipopolysaccharide-induced oxidative stress in the impairment of steroidogenesis and spermatogenesis in rats. Reprod Toxicol, 2006. 22(3): p. 493-500.
109.Diemer, T., et al., Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology, 2003. 144(7): p. 2882-91.
110.Crestanello, J.A., et al., Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. J Surg Res, 2002. 102(2): p. 221-8.
111.Lee, B.J., et al., Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition, 2012. 28(3): p. 250-5.
112.Chao, C.T. and C.K. Chiang, Uremic toxins, oxidative stress, and renal fibrosis: an interwined complex. J Ren Nutr, 2015. 25(2): p. 155-9.
113.Maheshwari, R., et al., Effect of concomitant administration of coenzyme Q10 with sitagliptin on experimentally induced diabetic nephropathy in rats. Ren Fail, 2017. 39(1): p. 130-139.
114.Ferrari, B. and C. Kusano, Total Antioxidant Capacity : a biomarker in biomedical and nutritional studies. Journal of Cell and Molecular Biology 7, 2008: p. 1-15.
115.Quiles, J.L., et al., Life-long supplementation with a low dosage of coenzyme Q10 in the rat: effects on antioxidant status and DNA damage. Biofactors, 2005. 25(1-4): p. 73-86.
116.Stallons, L.J., R.M. Whitaker, and R.G. Schnellmann, Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol Lett, 2014. 224(3): p. 326-32.
117.Granata, S., et al., Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics, 2009. 10: p. 388.
118.劉昌孝 and 孫瑞元, 藥物評價實驗設計與統計學基礎. 軍事醫學科學出版社, 1999.
119.Marín-García, J., Methods to Study Mitochondrial Structure and Function. Mitochondria and Their Role in Cardiovascular Disease, 2013.
120.DeLuca, M. and W.D. McElroy, Kinetics of the firefly luciferase catalyzed reactions. Biochemistry, 1974. 13(5): p. 921-5.

電子全文 電子全文(網際網路公開日期:20230811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊