跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許凱婷
研究生(外文):HSU, KAI-TING
論文名稱:新型天然防腐劑配方開發及效能評估
論文名稱(外文):Development and Effectiveness Evaluation of a New Formulation of Natural Preservative
指導教授:詹錦豐詹錦豐引用關係李珮琪李珮琪引用關係
指導教授(外文):CHAN, CHIN-FENGLEE, PEI-CHI
口試委員:林智健陳宜嫻林永昇詹錦豐李珮琪
口試委員(外文):LIN, CHIH-CHIENCHEN, YI-SHYANLIN, YUNG-SHENGCHAN, CHIN-FENGLEE, PEI-CHI
口試日期:2017-12-29
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:化妝品應用研究所
學門:民生學門
學類:美容學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:133
中文關鍵詞:天然防腐劑連苯三酚防腐效能試驗評估抗氧化試驗抗菌試驗
外文關鍵詞:Natural Preservative1,2,3-BenzenetriolPreservation Efficacy TestAntioxidant TestAntibacterial Test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1121
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
防腐劑在化妝品中扮演非常重要的角色,但近幾年來許多合成防腐劑對於人體危害性的報導,加深了人們對合成防腐劑的疑慮,因而對於天然防腐劑的開發越來越受重視。本研究利用加熱回流裝置提取香椿葉、五倍子、肉桂皮以及黃連根萃取物,萃取物複方依照《美國藥典》USP 51法規範中所訂的五種菌株(大腸桿菌、綠膿桿菌、金黃色葡萄球菌、白色念珠菌以及黑黴麴菌)進行防腐效能試驗評估;並使用氣相層析質譜儀(GC-MS)進行萃取物成分分析,並評估其總酚、清除DPPH自由基、清除超氧離子、還原能力、螯合亞鐵離子及總抗氧化能力等抗氧化能力試驗,另評估紙錠擴散法、最小抑菌及最小殺(真)菌濃度等抗菌效能試驗。GC-MS成分分析結果,香椿葉及五倍子萃取物的主要成分皆為連苯三酚(1,2,3-Benzenetriol)其比例為49.22%及94.30%;肉桂皮及黃連根萃取物主要成分為肉桂醛(Cinnamaldehyde)其比例為86.16%及26.25%。總酚試驗以五倍子萃取物的含量最多(698.37 µg GAE/mg of Extract),其次為香椿葉萃取物(133.77 µg GAE/mg of Extract);清除DPPH自由基、清除超氧陰離子、還原能力以及總抗氧化能力皆以五倍子萃取物效果最好;螯合亞鐵離子能力以香椿葉萃取物效果最好。抑菌圈試驗抑制大腸桿菌及綠膿桿菌以五倍子萃取物最好,抑菌圈最大可達19.7 mm及18.0 mm;抑制金黃色葡萄球菌以黃連根萃取物效果最好其可達21.7 mm;抑制白色念珠菌及黑黴麴菌以肉桂皮萃取物效果最好其可達37.3 mm及36.0 mm。天然複方防腐劑殺死大腸桿菌及綠膿桿菌最小濃度需1.4%及1.1%;金黃色葡萄球菌需0.6%;白色念珠菌需1.7%;黑黴麴菌則需3.0%。防腐效能試驗評估結果顯示,第7天即可抑制細菌於起始濃度的4.7 log以上;抑制真菌的效果於第7天減少3.7 log以上且抑制效果皆持續至第28天。防腐效能均優於《美國藥典》USP 51法中記載細菌濃度在第14天需減少起始細菌濃度2.0 log以上,至第28天細菌濃度必須無增長或持續減少;真菌於第14及28天均需少於或持平於起始真菌濃度的規範。本研究實驗結果顯示開發天然複方防腐劑具有非常高的潛力成為一個新的化妝品天然防腐劑。
Preservatives play a very important role in cosmetics. However, it has been reported that many synthetic preservatives could have harmful effects on human health in recent years. As a result, people increase concerns about the harmful effects of synthetic preservatives and drew more attention to the development of natural preservatives. In this study, we extracted the active ingredients of Toona sinensis, Galla chinensis, Cinnamomum cassia and Coptis chinensis by using hot reflux device. The formulations of four botanical extracts were challenged with a preservation efficacy test according to United States Pharmacopeia chapter 51 (USP 51) specification for five kinds of microbial strains including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans and Aspergillus niger. The composition of the extracts was analyzed by Gas Chromatography–Mass Spectrometry (GC-MS). The antioxidant activity of DPPH free radical, superoxide radical, reducing power, ferrous chelating, total antioxidant capacity and total phenols were evaluated. The antimicrobial activity was evaluated by disk diffusion, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal (Fungicidal) Concentration (MB(F)C). Spectra analysis of GC-MS showed that the main constituent of 1,2,3-Benzenetriol for T. sinensis and G. chinensis was 49.22% and 94.30%, respectively; for C. cassia and C. chinensis the main constituent cinnamaldehyde was 86.16% and 26.25%, respectively. The highest contents of total phenols were in the extract of G. chinensis (698.37 μg GAE / mg of Extract), followed by T. sinensis (133.77 μg GAE / mg of Extract). G. chinensis exhibited the best antioxidant activity of DPPH radical scavenging, superoxide anion scavenging, reducing power and total antioxidant capacity. T. sinensis exhibited the best activity on ferrous chelating. G. chinensis exhibited the best antibacterial effects on E. coli and P. aeruginosa the inhibition zone up to 19.7 mm and 18.0 mm, respectively. C. chinensis exhibited the best antibacterial effects on S. aureus inhibition zone 21.7 mm; C. cassia exhibited the best antifungal effects on C. albicans and A. niger inhibition zones 37.3 mm and 36.0 mm, respectively. The antimicrobial concentrations of formulations of four botanical extracts for E. coli and P. aeruginosa were 1.4% and 1.1%, respectively; for S. aureus, C. albicans, and A. niger were 0.6%, 1.7% and 3.0%, respectively. The preservation efficacy on inhibition of bacteria growth was above 4.7 log on the 7th day. The effect of inhibition on fungus growth was above 3.7 log on the 7th day, and inhibitory effects can last until the 28th day. Preservative efficacy of our formulation of botanical extracts is better than the USP 51 specification. The effectiveness criteria of USP 51 indicated that the preservatives have to reduce the initial bacterial concentration more than 2.0 log in on the 14th day and no increase in bacterial concentration on the 28th day and have to be less or equal to the initial fungal concentration on the 14th and 28th days. The results of this study show that our formulation of botanical extracts has a very high potential to become a new natural cosmetic preservative.
誌謝 ...................................................................... I
中文摘要................................................................... III
英文摘要................................................................... IV
目錄 ...................................................................... VI
表目錄 .................................................................... IX
圖目錄 .................................................................... X
第一章、 緒論 .............................................................. 1
第一節、 前言 .............................................................. 1
第二節、 防腐效能試驗介紹 ................................................... 4
一、 CTFA 法 .............................................................. 5
二、 ASTM 法 .............................................................. 6
三、 USP 51 法 ............................................................ 7
四、 CTFA 法、ASTM 法及USP 51 法三種試驗總整理............................... 9
第三節、 植物材料介紹 ...................................................... 11
第四節、 自由基與抗氧化系統關係 ............................................. 15
一、 自由基簡介 ............................................................ 15
二、 自由基來源及種類 ...................................................... 15
三、 自由基對於人體的傷害及抗氧化物質的作用 .................................. 15
第二章、 材料與方法 ........................................................ 17
第一節、 實驗架構設計 ...................................................... 17
一、 加熱回流裝置 .......................................................... 17
二、 萃取樣品之挑選 ........................................................ 17
三、 實驗設計流程 .......................................................... 20
第二節、 植物材料 .......................................................... 21
第三節、 菌株 .............................................................. 21
第四節、 實驗藥品及培養基 ................................................... 22
第五節、 實驗儀器設備 ....................................................... 24
第六節、 實驗材料與方法 ..................................................... 26
一、 各樣品加熱回流萃取程序和裝置 ............................................ 26
二、 氣相層析質譜儀分析萃取物成分之鑑定方法 ................................... 28
三、 萃取物抗氧化活性評估 ................................................... 30
四、 抗菌試驗測定 .......................................................... 36
五、 天然複方防腐劑配製 ..................................................... 50
六、 統計 .................................................................. 51
第三章、 結果 .............................................................. 52
第一節、 天然複方防腐劑篩選結果 .............................................. 52
第二節、 氣相層析質譜儀萃取物成分之鑑定結果 ................................... 54
一、 香椿葉 ................................................................ 54
二、 五倍子 ................................................................ 57
三、 肉桂皮 ................................................................ 60
四、 黃連根 ................................................................ 63
第三節、 抗氧化試驗結果 ..................................................... 66
一、 總酚含量試驗結果 ....................................................... 66
二、 清除DPPH 自由基能力試驗結果 ............................................ 68
三、 清除超氧陰離子能力試驗結果 .............................................. 71
四、 還原能力試驗結果 ....................................................... 74
五、 螯合亞鐵離子能力試驗結果 ................................................ 77
六、 總抗氧化能力試驗結果(TEAC) ............................................. 80
第四節、 抗菌試驗結果 ....................................................... 83
一、 抑菌圈試驗結果 ......................................................... 83
二、 最小抑制及最小殺(真)菌濃度(MIC&MB(F)C) .................................. 94
三、 防腐效能試驗評估 ....................................................... 96
第四章、 討論 ............................................................. 104
第五章、 結論 ............................................................. 107
第六章、 參考文獻 .......................................................... 108
[1]Jacobson, H. N. (1987). Dietary standards and future developments. Free Radical Biology and Medicine, 3(3), 209-213.

[2]Guan, Y., Chu, Q., Fu, L., & Ye, J. (2005). Determination of antioxidants in cosmetics by micellar electrokinetic capillary chromatography with electrochemical detection. Journal of Chromatography A, 1074(1), 201-204.

[3]Boldyrev, A. A. (1995). Paradoxes of cerebral oxidative metabolism. Biokhimiia (Moscow, Russia), 60(9), 1536-1542.
[4]Pastor-Nieto, M. A., Alcántara-Nicolás, F., Melgar-Molero, V., Pérez-Mesonero, R., Vergara-Sánchez, A., Martín-Fuentes, A., . . . de Eusebio-Murillo, E. (2017). Preservatives in Personal Hygiene and Cosmetic Products, Topical Medications, and Household Cleaners in Spain. Actas Dermo-Sifiliográficas (English Edition), 108(8), 758-770.

[5]Union, P. (2009). Regulation (EC) No 1223/2009 of the european parliament and of the council. Official Journal of the European Union L, 342, 59.

[6]Santos de Queiroz, N. (2004). A resistência bacteriana no contexto da infecção hospitalar. Texto & Contexto Enfermagem, 13(Esp).

[7]Wang, Y. X., Ye, Z. Z., Si, C. Y., & Ying, Y. B. (2012). Application of Aptamer Based Biosensors for Detection of Pathogenic Microorganisms. Chinese Journal of Analytical Chemistry, 40(4), 634-642.

[8]Murray, P. R., KS, R., & GS, K. (1998). Medical microbiology. St. Louis Missouri: Mosby Elsevier Health Science.

[9]Shi, G., Yin, H., Ye, J., Peng, H., Li, J., & Luo, C. (2013). Aerobic biotransformation of decabromodiphenyl ether (PBDE-209) by Pseudomonas aeruginosa. Chemosphere, 93(8), 1487-1493.

[10]Verhoef, J., Beaujean, D., Blok, H., Baars, A., Meyler, A., Van Der Werken, C., & Weersink, A. (1999). A Dutch approach to methicillin-resistant Staphylococcus aureus. European Journal of Clinical Microbiology & Infectious Diseases, 18(7), 461-466.

[11]張麗卿. (2011). 現代化妝品新論. 新北市: 高立圖書有限公司.

[12]Sutton, S. V., & Porter, D. (2002). Development of the antimicrobial effectiveness test as USP chapter< 51>. PDA Journal of Pharmaceutical Science and Technology, 56(6), 300-311.

[13]Kerdudo, A., Burger, P., Merck, F., Dingas, A., Rolland, Y., Michel, T., & Fernandez, X. (2016). Development of a natural ingredient – Natural preservative: A case study. Comptes Rendus Chimie, 19(9), 1077-1089.

[14]陳咨丰, & 詹錦豐. (2014). 市售化妝品中防腐劑及抗菌劑的調查分析. 弘光學報, (74), 69-81.

[15]Elsner, P., Merk, H. F., & Maibach, H. I. (1999). Cosmetics: controlled efficacy studies and regulation. American NY: Springer-Verlag Berlin Heidelberg.

[16]Fernandez, X., Merck, F., & Kerdudo, A. (2012). Conservateurs pour cosmétiques–Antioxydants et Anti-UV. Techniques de l’Ingénieur.

[17]Golden, R., Gandy, J., & Vollmer, G. (2005). A review of the endocrine activity of parabens and implications for potential risks to human health. Critical Reviews in Toxicology, 35(5), 435-458.

[18]Schnuch, A., Lessmann, H., Geier, J., & Uter, W. (2011). Contact allergy to preservatives. Analysis of IVDK data 1996-2009. British Journal of Dermatology, 164(6), 1316-1325.

[19]Wilkinson, J. D., Shaw, S., Andersen, K. E., Brandao, F. M., Bruynzeel, D. P., Bruze, M., . . . & Goossens, A. (2002). Monitoring levels of preservative sensitivity in Europe. Contact Dermatitis, 46(4), 207-210.

[20]Guardiola, F. (2002). Cholesterol and phytosterol oxidation products: analysis, occurrence, and biological effects. American IL: The American Oil Chemists' Society.

[21]Mezza, G. N., Borgarello, A. V., Grosso, N. R., Fernandez, H., Pramparo, M. C., & Gayol, M. F. (2018). Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chemistry, 242(Supplement C), 9-15.

[22]鄭萍, & 陳西平. (2007). 化妝品的微生物汙染問題及防腐效能評價方法. 中國衛生檢驗雜誌, 17(11) 2122-2124.

[23]李素玉. (2015). 化妝品防腐效能試驗方法的選擇. 廣州化工, 43(15), 148-149.

[24]楊昭順, 吳文童, 徐瑞蓮, 鄭智交, 孫毓蘋, & 陳振興. (2016). 化粧品微生物學. 臺中市: 華格那出版有限公司.

[25]Muscatiello, M. J. (1993). CTFA's preservation guidelines: a historical perspective and review. Cosmetics and Toiletries, 108(10), 53-59.

[26]Tran, T. T., Hurley, F. J., Shurbaji, M., & Koopman, L. B. (1994). Adequacy of cosmetic preservation: chemical analysis, microbial challenge and in‐use testing. International Journal of Cosmetic Science, 16(2), 61-76.

[27]蔡文城, & 蔡岳庭. (2008). 化妝品微生物學. 臺北市: 九州圖書文物有限公司.

[28]Wang, P. H., Tsai, M. J., Hsu, C. Y., Wang, C. Y., Hsu, H. K., & Weng, C. F. (2008). Toona sinensis Roem (Meliaceae) leaf extract alleviates hyperglycemia via altering adipose glucose transporter 4. Food and Chemical Toxicology, 46(7), 2554-2560.

[29]Wang, K. J., Yang, C. R., & Zhang, Y. J. (2007). Phenolic antioxidants from Chinese toon (fresh young leaves and shoots of Toona sinensis). Food Chemistry, 101(1), 365-371.

[30]Chang, H. L., Hsu, H. K., Su, J. H., Wang, P. H., Chung, Y. F., Chia, Y. C., . . . & Yuan, S. S. F. (2006). The fractionated Toona sinensis leaf extract induces apoptosis of human ovarian cancer cells and inhibits tumor growth in a murine xenograft model. Gynecologic Oncology, 102(2), 309-314.

[31]Hseu, Y. C., Chen, S. C., Lin, W. H., Hung, D. Z., Lin, M. K., Kuo, Y. H., . . . & Yang, H. L. (2011). Toona sinensis (leaf extracts) inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vascular endothelial cells. Journal of Ethnopharmacology, 134(1), 111-121.

[32]Edmonds, J. M., & Staniforth, M. (1998). Toona sinensis. Curtis's Botanical Magazine (United Kingdom), 15(3), 186-193.

[33]Chang, H. C., Hung, W. C., Huang, M. S., & Hsu, H. K. (2002). Extract from the leaves of Toona sinensis roemor exerts potent antiproliferative effect on human lung cancer cells. The American Journal of Chinese Medicine, 30(02n03), 307-314.

[34]Chen, H. M., Wu, Y. C., Chia, Y. C., Chang, F. R., Hsu, H. K., Hsieh, Y. C., . . . & Yuan, S. S. (2009). Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Letters, 286(2), 161-171.

[35]Bak, M. J., Jeong, J. H., Kang, H. S., Jin, K. S., Ok, S., & Jeong, W. S. (2009). Cedrela sinensis leaves suppress oxidative stress and expressions of iNOS and COX-2 via MAPK signaling pathways in RAW 264.7 cells. Preventive Nutrition and Food Science, 14(4), 269-276.

[36]Hsu, H. K., Yang, Y. C., Hwang, J. H., & Hong, S. J. (2003). Effects of Toona sinensis leaf extract on lipolysis in differentiated 3T3-L1 adipocytes. The Kaohsiung Journal of Medical Sciences, 19(8), 385-389.

[37]Kakumu, A., Ninomiya, M., Efdi, M., Adfa, M., Hayashi, M., Tanaka, K., & Koketsu, M. (2014). Phytochemical analysis and antileukemic activity of polyphenolic constituents of Toona sinensis. Bioorganic & Medicinal Chemistry Letters, 24(17), 4286-4290.

[38]Chen, G. H., Huang, F. S., Lin, Y. C., Hsu, C. K., & Chung, Y. C. (2013). Effects of water extract from anaerobic fermented Toona sinensis Roemor on the expression of antioxidant enzymes in the Sprague–Dawley Rats. Journal of Functional Foods, 5(2), 773-780.

[39]Jiang, S. H., Wang, C. L., Chen, Z. Q., Chen, M. H., Wang, Y. R., Liu, C. J., . . . & Li, Z. J. (2009). Antioxidant properties of the extract and subfractions from old leaves of Toona sinensis roem (meliaceae). Journal of Food Biochemistry, 33(3), 425-441.

[40]Wu, J. G., Peng, W., Yi, J., Wu, Y. B., Chen, T. Q., Wong, K. H., & Wu, J. Z. (2014). Chemical composition, antimicrobial activity against Staphylococcus aureus and a pro-apoptotic effect in SGC-7901 of the essential oil from Toona sinensis (A. Juss.) Roem. leaves. Journal of Ethnopharmacology, 154(1), 198-205.

[41]Zhang, W., Li, C., You, L. J., Fu, X., Chen, Y. S., & Luo, Y. Q. (2014). Structural identification of compounds from Toona sinensis leaves with antioxidant and anticancer activities. Journal of Functional Foods, 10(Supplement C), 427-435.

[42]Chen, T. S., Luo, Z. P., Cui, H. A., Zhen, X. Q., & Liu, Z. Z. (2000). Preliminary study of chemical constituents from leaves of Toona sinensis. Shanxi Forest Science and Technology, 20, 1-2.

[43]Hseu, Y. C., Chang, W. H., Chen, C. S., Liao, J. W., Huang, C. J., Lu, F. J., . . . Yang, H. L. (2008). Antioxidant activities of Toona Sinensis leaves extracts using different antioxidant models. Food and Chemical Toxicology, 46(1), 105-114.

[44]Wang, C. C., Tsai, Y. J., Hsieh, Y. C., Lin, R. J., & Lin, C. L. (2014). The aqueous extract from Toona sinensis leaves inhibits microglia-mediated neuroinflammation. The Kaohsiung Journal of Medical Sciences, 30(2), 73-81.

[45]Djakpo, O., & Yao, W. (2010). Rhus chinensis and Galla Chinensis-folklore to modern evidence: review. Phytotherapy Research, 24(12), 1739-1747.

[46]Ren, Z., Zhu, B., Wang, D., Ma, E., Su, D., & Zhong, Y. (2008). Comparative population structure of Chinese sumac aphid Schlechtendalia chinensis and its primary host-plant Rhus chinensis. Genetica, 132(1), 103-112.

[47]Lee, S. M., Lee, D. W., Park, J. D., & Kim, J. I. (1997). Study on formation and development of Schlechtendalia chinensis gall in Rhus javanica. Korean Journal of Applied Entomology, 36(1), 83-87.

[48]Tian, F., Li, B., Ji, B., Yang, J., Zhang, G., Chen, Y., & Luo, Y. (2009). Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis:The polarity affects the bioactivities. Food Chemistry, 113(1), 173-179.

[49]Sun, D. W. (1992). Chemistry of vegetable tannins. Beijing: Forestry Press of China, 1, 257.

[50]Kong, Q. (2005). Preliminary study on the extraction of tannins from Galla chinensis and its inhibition to nitrosation. Applied Science and Technology, 32, 62-64.

[51]Daogang, X., Jingbi, C., & Ruifang, L. (1997). A preliminary study on the antimutagenicity of extracts of Galla chinensis. West China Journal of Pharmaceutical Sciences, 12(3), 151-152.

[52]Huaijing, L. (1999). Experimental study in anti-aging effect of Rhus Chinensis Mill decoction on old mice. Heilongjiang Medicine and Pharmacy, 1, 011.
[53]Wang, J., Tang, R. Y., & Wang, Z. L. (2005). The effects of gallnut water extract on the activities of ALP inhibited by LPS. Chinese Journal of Conservative Dentistry, 6, 005.

[54]Mirpour, M., Gholizadeh Siahmazgi, Z., & Sharifi Kiasaraie, M. (2015). Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. Journal of Oral Biology and Craniofacial Research, 5(1), 7-10.

[55]Taniguchi, S., Yazaki, K., Yabu-uchi, R., Kawakami, K. Y., Ito, H., Hatano, T., & Yoshida, T. (2000). Galloylglucoses and riccionidin A in Rhus javanica adventitious root cultures. Phytochemistry, 53(3), 357-363.

[56]Lin, C. N., Chen, H. L., & Yen, M. H. (2008). Flavonoids with DNA strand-scission activity from Rhus javanica var. roxburghiana. Fitoterapia, 79(1), 32-36.

[57]Lee, T. H., Chiou, J. L., Lee, C. K., & Kuo, Y. H. (2005). Separation and determination of chemical constituents in the roots of Rhus javanica L. var. roxburghiana. Journal of the Chinese Chemical Society, 52(4), 833-841.

[58]Ouyang, M. A., Chang, C. I., Wein, Y. S., & Kuo, Y. H. (2008). New Phenol Glycosides from the Roots of Rhus javanica var. roxburghiana. Journal of the Chinese Chemical Society, 55(1), 223-227.

[59]Buziashvili, I. S., Komissarenko, N. F., Kovalev, I. P., Gordienko, V. G., & Kolesnikov, D. G. (1973). The structure of gallotannins. Chemistry of Natural Compounds, 9(6), 752-755.

[60]Wu-Yuan, C. D., Chen, C. Y., & Wu, R. T. (1988). Gallotannins inhibit growth, water-insoluble glucan synthesis, and aggregation of mutans streptococci. Journal of Dental Research, 67(1), 51-55.

[61]Tian, F., Li, B., Ji, B., Zhang, G., & Luo, Y. (2009). Identification and structure–activity relationship of gallotannins separated from Galla Chinensis. LWT-Food Science and Technology, 42(7), 1289-1295.

[62]Ahn, Y. J., Lee, C. O., Kweon, J. H., Ahn, J. W., & Park, J. H. (1998). Growth‐inhibitory effects of Galla Rhois‐derived tannins on intestinal bacteria. Journal of Applied Microbiology, 84(3), 439-443.

[63]Li, Z. X., Wang, X. H., Zhang, M. M., & Shi, D. Y. (2005). In-vitro antibacterial activity of ethanol-extract of Galla chinensis against Staphylococcus aureus. Traditional Chinese Drug Research and Clinical Pharmacology, 16, 103-105.

[64]Ballai, M. (2008). In vitro Anticandidal Activity of Cinnamomum verum. Journal of Medical Sciences, 8(4), 425-428.

[65]Geng, S., Cui, Z., Huang, X., Chen, Y., Xu, D., & Xiong, P. (2011). Variations in essential oil yield and composition during Cinnamomum cassia bark growth. Industrial Crops and Products, 33(1), 248-252.

[66]Choi, J., Lee, K. T., Ka, H., Jung, W. T., Jung, H. J., & Park, H. J. (2001). Constituents of the essential oil of the Cinnamomum cassia stem bark and the Biological Properties. Archives of Pharmacal Research, 24(5), 418-423.


[67]Wang, L., Wang, Z. M., LI, T. C., Zhou, X., Ding, L., & Zhang, H. Q. (2008). Rapid Extraction and Analysis of Essential Oil from Cinnamomum Cassia Presl. Chemical Research in Chinese Universities, 24(3), 275-280.

[68]Ooi, L. S., Li, Y., Kam, S. L., Wang, H., Wong, E. Y., & Ooi, V. E. (2006). Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. The American Journal of Chinese Medicine, 34(03), 511-522.

[69]Shen, Q., Chen, F., & Luo, J. (2002). Comparison studies on chemical constituents of essential oil from ramulus cinnamomi and cortex cinnamomi by GC-MS. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials, 25(4), 257-258.

[70]Huang, Y. F., Huang, J. W., TAO, L., & Zhang, Y. M. (2005). Chemical Components of Essential Oils of Cinnamomum cassia Presl. in Different Growth Year. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1, 021.

[71]Lee, H. S., & Ahn, Y. J. (1998). Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. Journal of Agricultural and Food Chemistry, 46(1), 8-12.

[72]Kurokawa, M., Kumeda, C. A., Yamamura, J. I., Kamiyama, T., & Shiraki, K. (1998). Antipyretic activity of cinnamyl derivatives and related compounds in influenza virus-infected mice. European Journal of Pharmacology, 348(1), 45-51.

[73]Unlu, M., Ergene, E., Unlu, G. V., Zeytinoglu, H. S., & Vural, N. (2010). Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food and Chemical Toxicology, 48(11), 3274-3280.

[74]Kim, J. H. (2017). Extraction time and temperature affect the extraction efficiencies of coumarin and phenylpropanoids from Cinnamomum cassia bark using a microwave-assisted extraction method. Journal of Chromatography B, 1063(Supplement C), 196-203.

[75]Kim, S. Y., Koo, Y. K., Koo, J. Y., Ngoc, T. M., Kang, S. S., Bae, K., . . . Yun-Choi, H. S. (2010). Platelet anti-aggregation activities of compounds from Cinnamomum cassia. Journal of Medicinal Food, 13(5), 1069-1074.

[76]Lee, H. S., Kim, B. S., & Kim, M. K. (2002). Suppression effect of Cinnamomum cassia bark-derived component on nitric oxide synthase. Journal of Agricultural and Food Chemistry, 50(26), 7700-7703.

[77]Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., . . . & von Wright, A. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46(9), 3590-3595.

[78]He, Y., Fan, G., Gao, J., & Peng, C. (2015). Correlation analyses between molecular perspective and phytochemical variations in Coptis chinensis Franch. Biochemical Systematics and Ecology, 61(Supplement C), 143-148.

[79]Tang, J., Feng, Y., Tsao, S., Wang, N., Curtain, R., & Wang, Y. (2009). Berberine and Coptidis Rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations. Journal of Ethnopharmacology, 126(1), 5-17.

[80]Luo, J. Y., Yan, D., & Yang, M. H. (2014). Study of the anti-MRSA activity of Rhizoma coptidis by chemical fingerprinting and broth microdilution methods. Chinese Journal of Natural Medicines, 12(5), 393-400.

[81]Letašiová, S., Jantová, S., Muckova, M., & Theiszová, M. (2005). Antiproliferative activity of berberine in vitro and in vivo. Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 149(2), 461-463.

[82]Halliwell, B., & Gutteridge, J. M. C. (1990). [1] Role of free radicals and catalytic metal ions in human disease: An overview. Methods in Enzymology, 186, 1-85.

[83]Fehér, J., Csomós, G., & Vereckei, A. (2012). Free radical reactions in medicine. Germany BER: Springer Science & Business Media.

[84]Wang, G., Jia, S., Niu, X., Tian, H., Liu, Y., Chen, X., . . . & Shi, G. (2017). Total free radical species and oxidation equivalent in polluted air. Science of The Total Environment, 609(Supplement C), 1103-1113.

[85]Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2(2), 219.

[86]Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.

[87]Amarowicz, R. (2007). Tannins: the new natural antioxidants? European Journal of Lipid Science and Technology, 109(6), 549-551.

[88]Chan, S., Gerson, B., & Subramaniam, S. (1998). The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clinics in Laboratory Medicine, 18(4), 673-685.

[89]吳佳哲. (2006). 烏心石抗腐朽菌活性成分之研究. 森林環境暨資源學研究所學位論文, 1-121.

[90]Chauhan, D. S., Bhattacharya, S., & Mueen Ahmed, K. K. (2013). Comparative in vitro antibacterial evaluation of different extracts of Camellia sinensis leaves form different geographical locations in India. Pharmacognosy Journal, 5(2), 87-90.

[91]葉冠辰. (2017). 馬告精油抗氧化與抗菌活性之檢測與機能性評估. 食品科學系研究所學位論文, 1-78.

[92]Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J. A., & Nunes, M. L. (2014). Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: Physical, antioxidant and antibacterial properties. LWT - Food Science and Technology, 59(1), 533-539.

[93]Wong, K. S., & Tsang, W. K. P. (2009). In vitro antifungal activity of the aqueous extract of Scutellaria baicalensis Georgi root against Candida albicans. International Journal of Antimicrobial Agents, 34(3), 284-285.

[94]Rajput, S. B., & Karuppayil, S. M. (2013). β-Asarone, an active principle of Acorus calamus rhizome, inhibits morphogenesis, biofilm formation and ergosterol biosynthesis in Candida albicans. Phytomedicine, 20(2), 139-142.

[95]Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303-313.

[96]Babushok, V. I., Linstrom, P. J., & Zenkevich, I. G. (2011). Retention indices for frequently reported compounds of plant essential oils. Journal of Physical and Chemical Reference Data, 40(4), 043101.

[97]Sheng, L., & Zhu, M.-J. (2014). Inhibitory effect of Cinnamomum cassia oil on non-O157 Shiga toxin-producing Escherichia coli. Food Control, 46(Supplement C), 374-381.

[98]段文錄, & 陳彬. (2013). 黃連木樹皮揮發油化學成分的GC-MS分析. 創新科技, (1), 87-87.

[99]Silva, E. M., Souza, J. N. S., Rogez, H., Rees, J. F., & Larondelle, Y. (2007). Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chemistry, 101(3), 1012-1018.

[100]Martinello, F., Soares, S. M., Franco, J. J., Santos, A. C., Sugohara, A., Garcia, S. B., . . . & Uyemura, S. A. (2006). Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters. Food and Chemical Toxicology, 44(6), 810-818.

[101]Liao, W. C., Lai, Y. C., Yuan, M. C., Hsu, Y. L., & Chan, C. F. (2011). Antioxidative activity of water extract of sweet potato leaves in Taiwan. Food Chemistry, 127(3), 1224-1228.

[102]Huang, Y. C., Chang, Y. H., & Shao, Y. Y. (2006). Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chemistry, 98(3), 529-538.

[103]Khaled-Khodja, N., Boulekbache-Makhlouf, L., & Madani, K. (2014). Phytochemical screening of antioxidant and antibacterial activities of methanolic extracts of some Lamiaceae. Industrial Crops and Products, 61, 41-48.

[104]Dinis, T. C., Madeira, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161-169.

[105]Wootton-Beard, P. C., Moran, A., & Ryan, L. (2011). Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Research International, 44(1), 217-224.

[106]Reddy, L. J., & Jose, B. (2011). Chemical composition and antibacterial activity of the volatile oil from the leaf of Syzygium samarangense (Blume) Merr. & LM Perry. Asian Journal of Biochemical and Pharmaceutical Research, 1, 263-269.

[107]Skočibušić, M., Bezić, N., & Dunkić, V. (2006). Phytochemical composition and antimicrobial activities of the essential oils from Satureja subspicata Vis. growing in Croatia. Food Chemistry, 96(1), 20-28.

[108]Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(suppl 1), 5-16.

[109]Gupta, D., & Kumar, M. (2017). Evaluation of in vitro antimicrobial potential and GC–MS analysis of Camellia sinensis and Terminalia arjuna. Biotechnology Reports, 13, 19-25.

[110]鄭超. (2007). 化妝品中微生物的危害及其控制與檢測. 中國香料香精化妝品工業學會, 255-256.

[111]Yang, H. L., Chang, W. H., Chia, Y. C., Huang, C. J., Lu, F. J., Hsu, H. K., & Hseu, Y. C. (2006). Toona sinensis extracts induces apoptosis via reactive oxygen species in human premyelocytic leukemia cells. Food and Chemical Toxicology, 44(12), 1978-1988.

[112]Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59(Supplement C), 282-289.

[113]Zhu, L., Huang, B., Ban, X., He, J., Chen, Y., Han, L., & Wang, Y. (2012). Coptis chinensis inflorescence extract protection against ultraviolet-B-induced phototoxicity, and HPLC–MS analysis of its chemical composition. Food and Chemical Toxicology, 50(7), 2584-2588.

[114]Yuan, Z. W., Leung, E. L. H., Fan, X. X., Zhou, H., Ma, W. Z., Liu, L., & Xie, Y. (2015). Quantitative evaluation of berberine subcellular distribution and cellular accumulation in non-small cell lung cancer cells by UPLC–MS/MS. Talanta, 144(Supplement C), 20-28.

[115]Yi, Z. B., Yan, Y., Liang, Y. Z., & Zeng, B. (2007). Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. Journal of Pharmaceutical and Biomedical Analysis, 44(1), 301-304.

[116]Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317-333.

[117]Zhao, X., Sun, H., Hou, A., Zhao, Q., Wei, T., & Xin, W. (2005). Antioxidant properties of two gallotannins isolated from the leaves of Pistacia weinmannifolia. Biochimica et Biophysica Acta (BBA) - General Subjects, 1725(1), 103-110.

[118]Dhingra, N., Kar, A., Sharma, R., & Bhasin, S. (2017). In-vitro antioxidative potential of different fractions from Prunus dulcis seeds: Vis a vis antiproliferative and antibacterial activities of active compounds. South African Journal of Botany, 108(Supplement C), 184-192.

[119]Lima, V. N., Oliveira-Tintino, C. D. M., Santos, E. S., Morais, L. P., Tintino, S. R., Freitas, T. S., . . . & Coutinho, H. D. (2016). Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial Pathogenesis, 99(Supplement C), 56-61.

[120]Huang, X., Cheng, L., Exterkate, R. A. M., Liu, M., Zhou, X., Li, J., & ten Cate, J. M. (2012). Effect of pH on Galla chinensis extract's stability and anti-caries properties in vitro. Archives of Oral Biology, 57(8), 1093-1099.

[121]Ito, S., Nakagawa, Y., Yazawa, S., Sasaki, Y., & Yajima, S. (2014). Antifungal activity of alkyl gallates against plant pathogenic fungi. Bioorganic & Medicinal Chemistry Letters, 24(7), 1812-1814.

[122]Kubo, I., Xiao, P., & Fujita, K. i. (2001). Antifungal activity of octyl gallate: structural criteria and mode of action. Bioorganic & Medicinal Chemistry Letters, 11(3), 347-350.

[123]Mason, T. L. (1987). Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds. Phytochemistry, 26(8), 2197-2202.

[124]Przygodzka, M., Zielińska, D., Ciesarová, Z., Kukurová, K., & Zieliński, H. (2014). Comparison of methods for evaluation of the antioxidant capacity and phenolic compounds in common spices. LWT - Food Science and Technology, 58(2), 321-326.

[125]Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13(4), 390-397.

[126]Fennell, C. W., Lindsey, K. L., McGaw, L. J., Sparg, S. G., Stafford, G. I., Elgorashi, E. E., . . . & Van Staden, J. (2004). Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicology. Journal of Ethnopharmacology, 94(2), 205-217.

[127]Choi, S. W., Kim, H. J., Kim, M. S., & LEE, I. J. Natural antibiotic preservative and cosmetic composition containing the extract of Siegesbeckia glabrescens Makino. KR10-2007-0114383. Feb 18, 2010.

[128]龔盛昭. 一種天然防腐劑組合物及其在化妝品中的應用. CN103,432,047B. Jul 22, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top