跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳頎寯
研究生(外文):Chi-Chun Chen
論文名稱:利用直接傳輸路徑策略在基於SDN的內容中心網路達成有效率緩存
論文名稱(外文):Directed transmission path strategy on SDN-based Content Centric Networks for efficient caching
指導教授:王三元
指導教授(外文):San-Yuan Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:38
外文關鍵詞:SDNCCNICNCacheControllerSwitch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
伴隨科技的發展,網際網路的發展已經跟生活密不可分,根據Cisco的預測與統計,2015~2020年全球通信量數以倍增,其中以手機流量為最,在未來5G的應用上更是如此,並且5G的核心網路架構會開始使用軟體定義網路(Software-Define-Network, SDN)架構來做傳導。
以現今來說,Google資料中心早已開始研發及使用SDN來增益網路頻寬使用率,在未來中傳統的VLAN也會因為資料流量過大而漸漸飽和而轉向網路虛擬化,所以各大設備商也開始著重於SDN各項相關的研究,因此這些議題是非常具有發展性的。
在這些議題中又以緩存作為最重要課題之一,如何平衡緩存命中率與節點替代率為主要課題之一,並以此為基礎更進一步的令網路更加快速且傳輸更加有效率。因此我們提出了直接傳輸路徑策略,令初始時即能夠快速確認連線資訊,快速找出最佳傳輸路徑,減少緩存資源浪費。
此研究的目的在於以SDN為架構來建立CCN(Content Centric Network),藉由直接傳輸路徑的有效率緩存模式、沿途緩存機制(Leave Copy Everywhere,LCE)與TCP/IP來模擬比較,並且利用Clean-Slate作法來設計出依靠CCN架構而不使用傳統TCP/IP的架構實作,並且透過Linux、Mininet、Ryu Controll和Switch來模擬實驗得出數據,再收集統計與傳統TCP/IP作法間的差異性,最後以FTP實際傳輸得到數據和流量。
從這些實驗中得到網路速率與緩存命中率關係,使之能夠於初始時連線更加快速且更加準確,使其不會像沿途緩存模式一樣,造成緩存的負擔,從而影響網路效能。在這些實驗數據中可以看出在初期傳輸時能夠讓網路速度提升約5%的效率,也因為這個策略令緩存命中率一樣能在初期提升3-5%的效能。
With the development of technology, Internet has become inseparable from life. According to Cisco''s forecasts and statistics, global network traffic will multiply between 2015 and 2020, among which mobile phone traffic will be the most important. This will be even more evident in the future with the development of the 5G application and the core network architecture of the 5G will start to use the SDN (Software-Define-Network) architecture for transmission.
At present, Google Data Centers have already begun to develop and use the SDN to gain network bandwidth usage. In the future, the traditional VLANs will gradually turn to network virtualization because excessive data traffic will inevitably lead to network saturation. Therefore, major equipment vendors have begun to focus on SDN related research, and hence related topics possess great potential of development.
Cache is one of the most important topics. Attention will be on how to balance the cache hit rate and node replacement rate, and furthermore, to speed up the network and to make the transmission more efficient. Therefore, we propose a direct transmission path strategy, which enables the connection information to be quickly confirmed at the initial stage, quickly find the optimal transmission path, and reduce the waste of cache resources.
The purpose of this research is to establish CCN (Content Centric Networking) with the SDN as the architecture, and simulate it by combining the LCE (Leave Copy Everywhere) with the efficient buffer mode of direct transmission path.
Besides, this research adopts the Clean-Slate method to design an architecture that relies on the CCN architecture instead of the traditional TCP/IP, conducts simulation by means of the Linux, the Mininet, the Ryu Controller and the Switch, and assesses the difference between the results and the traditional TCP/IP observations. Finally, actual transmission is executed via FTP to get data and traffic.
Research findings include the relationship between network speed and cache hit ratio, so that the speed can be faster and more accurate in the beginning and unnecessary waste of cache resources or network performance degradation due to excessive network coverage can be avoided. From these experimental data we can seen that the network speed can be improved by about 5% in the initial transmission, and this strategy can make the cache hit ratios increase by 3-5% in the initial stage.
誌謝 II
ABSTRACT III
摘要 V
目次 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 4
第二章 相關背景知識及研究 5
2.1 SDN架構 5
2.2 SDN特色 6
2.3 SDN價值與優勢 6
2.4 CLEAN SLATE 7
2.5 內容中心網路 7
2.6 信息中心網路 8
2.7 緩存命中率 8
2.8 相關研究 9
第三章 以直接傳輸路徑策略達成有效率緩存 11
3.1 直接傳輸路徑策略 11
3.2 實驗環境設定 13
3.3 實驗設計 16
第四章 CCN傳輸效能監測與資料分析 20
4.1 流量傳送與接收 20
4.2 傳輸效能資料分析與監測 21
4.3 實驗結果總結 24
第五章 結論 26
參考文獻 27
[1]Marc Mendonca, Bruno Astuto A. Nunes, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti, "A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks," in submission 2013.
[2]Sakir Sezer, Barbara Fraser, David Lake, Jim Finnegan, Niel viljoen, Marc Miller, and Navneet Rao, " Are We Ready for SDN? Implementation Challenges for Software-Defined Networks," on IEEE Communications Magazine, issue 7, vol.51, p.36-43, Jul. 2013.
[3]Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner, "OpenFlow: Enabling Innovation in Campus Networks," on ACM SIGCOMM Computer Communication Review, vol.38, issue 2, pp.69-74, Apr. 2008.
[4]Boris Koldehofe, Frank Durr, Muhammad Adnan Tariq, and Kurt Rothermel, "The power of software-defined networking: line rate content-based routing using OpenFlow," on Proceedings of the 7th Workshop on Middleware for Next Generation Internet Computing, Article No. 3, 2012.
[5]Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana Kompella, “ElastiCon: An elastic distributed SDN controller,” ACM/IEEE Symposium on Architectures for Networking and Communications Systems(ANCS 14), pp.17-28, October 2014.
[6]Elian Aubry, Thomas Silverston, and Isabelle Chrisment, “SRSC: SDNbased routing scheme for CCN,” IEEE Conference on Network Softwarization(NetSoft 15), April 2015.
[7]Bruno Nunes Astuto, Marc Mendonça, Xuan Nam Nguyen, Katia Obraczka, and Thierry Turletti. A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. Research Report hal00825087, INRIA - UCSC, October 2013.
[8]X.N. Nguyen. Software defined networking in wireless mesh network. Msc. thesis, INRIA, UNSA, August 2012.
[9]Xuan-Nam Nguyen, Damien Saucez, and Thierry Turletti. Efficient caching in Content-Centric Networks using OpenFlow. In 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 67–68. IEEE, April 2013.
[10]L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined networking (SDN): SDN for big data and big data for SDN,” IEEE Network, vol. 30, no. 1, pp. 58–65, Jan. 2016.
[11]A. Shah S, J. Faiz, A. Farooq, et al. “An architectural evaluation of SDN controllers,” IEEE. 2013 IEEE International Conference on IEEE. Budapest: ICC, 013: 3504-3508.
[12]A. Cahn, J. Hoyos, M. Hulse, et al. “Software-defined energy communication networks: from substation automation to future smart grids,” IEEE. 2013 IEEE International Conference on IEEE. Vancouver: SmartGridComm, 2013: 558-563.
[13]P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-own, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: fast programmable match-action processing in hardware for SDN,” in ACM SIGCOMM, 2013.
[14]Open Networking Foundation, “Software-Defined Networking: The New Norm for Networks,” White paper, Open Networking Foundation, Palo Alto, CA, USA, April 2012.
[15]D. Bernardini, T. Silverston and O. Festor, “Cache management strategy for CCN based on content popularity,”. Berlin: Springer Berlin Heidelberg, 2013.
[16]I. Psaras, W.K. Chai , G. Pavlou. “Probabilistic in-network caching for information-centric networks, Edition of the ICN Workshop on Information-Centric Networking,” August 13-17, 2012, Helsinki, Finland, New York: ACM Press, 2012:55-60.
[17]W.K. Chai, D. He, I. Psaras, G. Pavlou, et al. “Cache “less for more” in information-centric networks,” International Conference on Research in Networking,NETWORKING 2012 pp 27-40
[18]Eberhart, R.C. and Shi, Y., “Particle Swarm Optimization: Developments, Applications and Resources,” Proc. IEEE Int. Conf. On Evolutionary Computation, Vol. 1, pp. 81-86, 2001.
[19]M. Srivatsa, A. Iyengar, and Ling Liu. Privacy in voip networks: A k-anonymity approach. In INFOCOM 2009, IEEE, pages 2856– 2860, April 2009
[20]I. Abdullahi, S. Arif, and S. Hassan, “Survey on caching approaches in information centric networking,” J. Netw. Comput. Appl., vol. 56, no. C, pp. 48–59, Oct. 2015
[21]J. Kennedy, R. Eberhart Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference on (IEEE). 1995, 4: 1942–1948
[22]Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html , Aug. 2018
[23]David. Orenstein, “A broad-based team of Stanford researchers aims to overhaul the Internet,” March 14, 2007
[24]Van. Jacobson, “A new way of looking at networking,” Aug 30, 2006
[25]C. Liang, F. Yu, X. Zhang, “Information-Centric Network Function Virtualization over 5G Mobile Wireless Networks,” IEEE Network, vol. 29, no. 3, pp. 68-74, 2015.
[26]Huston. Geoff, “Web Caching,” Cisco. The Internet Protocol Journal - Volume 2, No. 3. Retrieved Sep 10, 2009
[27]O''Neil, J. Elizabeth, O''Neil, E. Patrick, Gerhard, Weikum, “The LRU-K Page Replacement Algorithm for Database Disk Buffering,” Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. SIGMOD 1993. New York, NY, USA: ACM: 297-306.
[28]Ryu https://ryu.readthedocs.io/en/latest/getting_started.html Aug. 2018
[29]Mininet: An instant virtual network on your laptop. http://mininet.org/ Aug. 2018
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top