跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭喆方
研究生(外文):Che-Fang Hsiao
論文名稱:益生菌之益源質抑制大腸癌細胞株HCT116生長之機制探討
論文名稱(外文):Tumor-suppressive Effects of Biogenic on HCT116 Human Colorectal Cancer Cells
指導教授:張基隆張基隆引用關係謝寶萱
指導教授(外文):Kee-Lung ChangBau-Shan Hsieh
口試委員:顏銓敏蘇淑惠
口試委員(外文):Chuan-Min YenShu-Hui Su
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:116
中文關鍵詞:益生菌益源質大腸癌
外文關鍵詞:ProbioticBiogeniccolorectal cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近年研究發現,大腸癌病患的腸道菌出現生態失衡的狀態,因此可以得知腸道菌與大腸癌的發展有著密切的關連,此外,許多乳酸菌(Lactobacillus)的益源質(Biogenics)已被證實能夠抑制大腸癌細胞的生長,但目前尚未有研究探討同樣為益生菌的酵母菌對於大腸癌的影響。因此本研究欲尋找一種能夠抑制大腸癌細胞生長的益源質-酵母菌萃取物,並進一步探討其中詳細的機制。在本研究中,找出了一種酵母菌萃取物能夠抑制人類大腸癌細胞株HCT116的生長,並將其命名為YE。本研究發現,YE藉由增加活性氧物質 (Reactive oxygen species, ROS)的產生以及耗盡麩胱甘肽還原酵素 (Glutathione, GSH)以增加細胞內的氧化壓力,促進鈣離子流入細胞中,導致粒線體受損而釋放出細胞色素c (Cytochrome c),並活化下游凋亡蛋白酶-9, -3 (Caspase -9, -3),使細胞走向細胞凋亡 (Apoptosis),然而,此路徑可被鈣離子螯合劑-EDTA所抑制。另外,本研究也發現,YE所造成的氧化壓力也會活化Beclin 1蛋白,並增加酸性囊狀胞器(Acidic vesicular organelles, AVOs)的產生,進而引起大腸癌細胞HCT116走向細胞自噬 (Autophagy)。本研究證實,YE同時引起大腸癌細胞HCT116走向鈣離子依賴型細胞凋亡 (Ca2+-dependent mitochondrial apoptosis)以及Beclin 1蛋白所調節的細胞自噬 (Beclin-1-mediated autophagy)。
Recent research has shown that intestinal microflora was changed in colorectal cancer patients suggesting intestinal microflora closely related to the occurrence of colorectal cancer. Besides, some biogenics, which derive from Lactobacillus strains have been demonstrated that have tumor-suppressive effects on colorectal cancer cells. However, there is currently no research on the effects of Saccharomyces on colorectal cancer; thus, this study set out to ascertain a specific biogenic, yeast extract, that has tumor-suppressive effects and further to investigate the underlying mechanisms involved. In this study, an extract derives from Saccharomyces, which is identified and named YE, which has cytotoxicity to HCT116 human colorectal cancer cells. Furthermore, underlying mechanisms were explored. The results showed that YE treatment caused oxidative stress by increased reactive oxygen species (ROS) production and glutathione (GSH) depletion. Afterwards, Ca2+ influx was induced then resulting in an increased [Ca2+]i, which further increased ROS production and caused mitochondrial dysfunction accompanied by the release of cytochrome c, and then triggered a cascade of downstream caspase activation that led to DNA fragmentation followed by apoptotic cell death. However, this pathway could be suppressed by addition of EDTA. Apart from apoptosis, the excessive ROS production also activated Beclin 1, which promoted both apoptosis and autophagy process by activating caspase 9 and increasing the formation of acidic vesicular organelles (AVOs). In conclusion, YE treatment caused cell death in human colorectal carcinoma cell line HCT116 through Ca2+-dependent mitochondrial apoptosis and Beclin-1-mediated autophagy.
Contents
Acknowledgement i
Abstract iii
中文摘要 iv
Chapter 1 Introduction 1
1.1. Colorectal Cancer (CRC) 1
1.2. Probiotics 2
1.3. Biogenics 3
1.4. Apoptosis 3
1.5. Oxidative Stress 5
1.6. Apoptosis and Autophagy 6
1.7. Autophagy 6
Chapter 2 Research Purpose 8
Chapter 3 Research Design 9
Chapter 4 Materials 10
4.1. Cell Lines 10
4.2. Experimental Supplies 11
4.3. Drug 11
4.4. Reagents 12
4.5. Equipments 21
Chapter 5 Methods 23
5.1. Cell Culture 23
5.2. Crystal Violet Cytotoxicity Assay 25
5.3. Cellular Reactive Oxygen Species (ROS) Analysis 26
5.4. Cellular Glutathione (GSH) Levels Analysis 27
5.5. Quantitative Real-Time Polymerase Chain Reaction (Q-PCR) 28
5.6. Mitochondria Membrane Potential (Δψm) Detection 30
5.7. Cellular Calcium (Ca2+) Levels Analysis 31
5.8. Western Blotting 31
5.9. Caspase 3 Activity Analysis 34
5.10. DNA Fragmentation Detection 36
5.11. Apoptosis Analysis (Hoechst 33342 Staining) 37
5.12. Cellular Adenosine Triphosphate (ATP) Levels Analysis 38
5.13. Cellular Lactate Levels Analysis 39
5.14. Autophagy Analysis 40
Chapter 6 Results 42
6.1. Inhibition of cell growth 42
6.2. An Increase of Cellular Reactive Oxygen Species (ROS) Production 43
6.3. A Decrease of Cellular Glutathione (GSH) Levels in HCT116 Cells 44
6.4. mRNA Expression of Antioxidant-Related Genes in HCT116 Cells 44
6.5. A Decrease of Mitochondria Membrane Potential (Δψm) in HCT116 Cells 45
6.6. Elevated Cellular Calcium (Ca2+) Levels in HCT116 Cells 46
6.7. Apoptosis-Related Protein Expression in HCT116 Cells 46
6.8. Increased Caspase 3 Activity in HCT116 Cells 47
6.9. DNA Fragmentation in HCT116 Cells 47
6.10. Apoptosis-Related Morphological Changes of HCT116 Cells 48
6.11. Decreased Cellular Adenosine Triphosphate (ATP) Levels in HCT116 Cells 48
6.12. An Increase of Cellular Lactate Levels in HCT116 Cells 49
6.13. Induction of Autophagy in HCT116 cells 49
6.14. Recovery of Cell Viability in HCT116 Cells 50
6.15. Ethylenediaminetetraacetic acid (EDTA) Prevent Yeast Extract-treated HCT116 cells from undergoing mitochondria-mediated apoptosis 52
Chapter 7 Discussion 56
Chapter 8 References 62
Chapter 9 Charts 72
Figure 1. Cell Growth Inhibition of Yeast Extract to Human Colorectal Carcinoma Cell Line HCT116, Hepatoma-Derived Cell Line HA22T/VGH, and Human Melanoma Cell Line A375 72
Figure 2. Morphological Changes of HCT116 Cells Caused by Yeast Extract 73
Figure 3. An Increase of Cellular Reactive Oxygen Species (ROS) Production 74
Figure 4. A Decrease of Cellular Glutathione (GSH) Levels in HCT116 Cells 75
Figure 5. mRNA Expression of Antioxidant-Related Genes in HCT116 Cells 76
Figure 6. A Decrease of Mitochondria Membrane Potential (Δψm) in HCT116 Cells 77
Figure 7. Elevated Cellular Calcium (Ca2+) Levels in HCT116 Cells 78
Figure 8. Apoptosis-Related Protein Expression in HCT116 Cells 79
Figure 9. Increased Caspase 3 Activity in HCT116 Cells 80
Figure 10. DNA Fragmentation in HCT116 Cells 81
Figure 11. Apoptosis-Related Morphological Changes of HCT116 Cells Observed by Hoechst 33342 Staining 82
Figure 12. Decreased Cellular Adenosine Triphosphate (ATP) Levels in HCT116 Cells 83
Figure 13. An Increase of Cellular Lactate Levels in HCT116 Cells 84
Figure 14. Induction of Autophagy in HCT116 cells by Yeast Extract 85
Figure 15. Autophagy-Related Protein Expression in HCT116 Cells. 86
Figure 16. Autophagy-Related Morphological Changes in HCT116 Cells 87
Figure 17. The Effects of Pyruvate on Cell Recovery of Yeast Extract-treated HCT116 Cells 88
Figure 18. The Effects of N-acetyl-cysteine (NAC) on Cell Recovery of Yeast Extract-treated HCT116 Cells 89
Figure 19. The Effects of Ethylenediaminetetraacetic Acid (EDTA) on Cell Recovery of Yeast Extract-treated HCT116 Cells 90
Figure 20. EDTA Reduce Cellular Reactive Oxygen Species (ROS) Production in Yeast Extract-treated HCT116 Cells 91
Figure 21. EDTA Decrease Cellular Calcium (Ca2+) Levels in Yeast Extract-treated HCT116 Cells 92
Figure 22. EDTA Increase Mitochondria Membrane Potential (Δψm) in Yeast Extract-treated HCT116 Cells 93
Figure 23. EDTA Reduce DNA Fragmentation in Yeast Extract-treated HCT116 Cells 94
Figure 24. EDTA Has no Effects on the Induction of Autophagy in Yeast Extract-treated HCT116 Cells 95
Figure 25. EDTA Elevate Cellular Adenosine Triphosphate (ATP) Production in Yeast Extract-treated HCT116 Cells 96
Figure 26. Schematic Diagram of Yeast Extract’s Effects on HCT116 Cells 97
Chapter 10 Appendix 98
Akin H, Tozun N (2014) Diet, microbiota, and colorectal cancer. J Clin Gastroenterol 48 Suppl 1: S67-9
Aran V, Victorino AP, Thuler LC, Ferreira CG (2016) Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin Colorectal Cancer 15: 195-203
Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17: 1165-7
Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, Gibson SB (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195-204
Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120: 483-95
Bosman FT, Visser BC, van Oeveren J (1996) Apoptosis: pathophysiology of programmed cell death. Pathol Res Pract 192: 676-83
Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435: 297-312
Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE (1981) Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res 41: 1751-6
Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14: 32
Chong ES (2014) A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol 30: 351-74
Conlon MA, Bird AR (2014) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7: 17-44
Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9: 501-7
Cousin FJ, Jouan-Lanhouet S, Dimanche-Boitrel MT, Corcos L, Jan G (2012) Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One 7: e31892
de Vrese M, Kristen H, Rautenberg P, Laue C, Schrezenmeir J (2011) Probiotic lactobacilli and bifidobacteria in a fermented milk product with added fruit preparation reduce antibiotic associated diarrhea and Helicobacter pylori activity. J Dairy Res 78: 396-403
de Waard R, Garssen J, Bokken GC, Vos JG (2002) Antagonistic activity of Lactobacillus casei strain shirota against gastrointestinal Listeria monocytogenes infection in rats. Int J Food Microbiol 73: 93-100
Denton D, Xu T, Kumar S (2015) Autophagy as a pro-death pathway. Immunol Cell Biol 93: 35-42
Diosma G, Romanin DE, Rey-Burusco MF, Londero A, Garrote GL (2014) Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J Microbiol Biotechnol 30: 43-53
Du H, Che J, Shi M, Zhu L, Hang JB, Chen Z, Li H (2017) Beclin 1 expression is associated with the occurrence and development of esophageal squamous cell carcinoma. Oncol Lett 14: 6823-6828
DuPont AW, DuPont HL (2011) The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol 8: 523-31
Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35: 495-516
Engelmann J, Volk J, Leyhausen G, Geurtsen W (2005) ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone. J Biomed Mater Res B Appl Biomater 75: 272-6
Femia AP, Luceri C, Dolara P, Giannini A, Biggeri A, Salvadori M, Clune Y, Collins KJ, Paglierani M, Caderni G (2002) Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis 23: 1953-60
Fetissov SO (2017) Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 13: 11-25
Fulda S (2010) Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol 2010: 370835
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM et al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446-50
Furuya D, Tsuji N, Yagihashi A, Watanabe N (2005) Beclin 1 augmented cis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res 307: 26-40
Gewirtz DA (2014) The Four Faces of Autophagy: Implications for Cancer Therapy. Cancer Research 74: 647-651
Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51: 1417-23
Gill HS, Shu Q, Lin H, Rutherfurd KJ, Cross ML (2001) Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med Microbiol Immunol 190: 97-104
Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221: 3-12
Gomez-Crisostomo NP, Lopez-Marure R, Zapata E, Zazueta C, Martinez-Abundis E (2013) Bax induces cytochrome c release by multiple mechanisms in mitochondria from MCF7 cells. J Bioenerg Biomembr 45: 441-8
Gorlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: A mutual interplay. Redox Biol 6: 260-71
Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8: 2003-14
Haghshenas B, Nami Y, Haghshenas M, Abdullah N, Rosli R, Radiah D, Khosroushahi AY (2015) Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiologyopen 4: 803-13
Hague A, Paraskeva C (2004) Apoptosis and disease: a matter of cell fate. In Nature Publishing Group
Halasi M, Wang M, Chavan TS, Gaponenko V, Hay N, Gartel AL (2013) ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem J 454: 201-8
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57-70
Haraldsdottir S, Einarsdottir HM, Smaradottir A, Gunnlaugsson A, Halfdanarson TR (2014) [Colorectal cancer - review]. Laeknabladid 100: 75-82
Horimoto K, Nishimura Y, Oyama TM, Onoda K, Matsui H, Oyama TB, Kanemaru K, Masuda T, Oyama Y (2006) Reciprocal effects of glucose on the process of cell death induced by calcium ionophore or H2O2 in rat lymphocytes. Toxicology 225: 97-108
Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9: 179-88
Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18: 571-80
Kathuria M, Bhattacharjee A, Sashidhara KV, Singh SP, Mitra K (2014) Induction of mitochondrial dysfunction and oxidative stress in Leishmania donovani by orally active clerodane diterpene. Antimicrob Agents Chemother 58: 5916-28
Keku TO, Dulal S, Deveaux A, Jovov B, Han X (2015) The gastrointestinal microbiota and colorectal cancer. Am J Physiol Gastrointest Liver Physiol 308: G351-63
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239-57
Li Y, Couch L, Higuchi M, Fang JL, Guo L (2012) Mitochondrial dysfunction induced by sertraline, an antidepressant agent. Toxicol Sci 127: 582-91
Lilly DM, Stillwell RH (1965) Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science 147: 747-8
Lin YM, Hu CP, Chou CK, TW OL, Wuu KT, Chen TY, Peng FK, Liu TJ, Ko JL, Chang CM (1982) [A new human hepatoma cell line: establishment and characterization]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 15: 193-201
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-8
Los M, Walczak H (2002) Caspases: their role in cell death and cell survival. Taylor & Francis US,
Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12: 661-72
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741-52
Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, Tjalsma H (2011) Towards the human colorectal cancer microbiome. PLoS One 6: e20447
Miao L, Wang X, Jiang W, Yang S, Zhou H, Zhai Y, Zhou X, Dong K (2013) Optimization of the culture condition for an antitumor bacterium Serratia proteamacula 657 and identification of the active compounds. World J Microbiol Biotechnol 29: 855-63
Morishige Y, Fujimori K, Amano F (2013) Differential resuscitative effect of pyruvate and its analogues on VBNC (viable but non-culturable) Salmonella. Microbes Environ 28: 180-6
Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833: 3448-3459
Nistal E, Fernandez-Fernandez N, Vivas S, Olcoz JL (2015) Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota. Front Oncol 5: 220
Norbury CJ, Hickson ID (2001) Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 41: 367-401
Okumura R, Takeda K (2017) Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental &Amp; Molecular Medicine 49: e338
Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20: 460-73
Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27: 6407-18
Plati J, Bucur O, Khosravi-Far R (2008) Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem 104: 1124-49
Potara M, Bawaskar M, Simon T, Gaikwad S, Licarete E, Ingle A, Banciu M, Vulpoi A, Astilean S, Rai M (2015) Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Colloids Surf B Biointerfaces 133: 296-303
Querol A, Fleet GH (2006) Yeasts in food and beverages.
Rekasi Z, Czompoly T, Schally AV, Boldizsar F, Varga JL, Zarandi M, Berki T, Horvath RA, Nemeth P (2005) Antagonist of growth hormone-releasing hormone induces apoptosis in LNCaP human prostate cancer cells through a Ca2+-dependent pathway. Proc Natl Acad Sci U S A 102: 3435-40
Saad N, Delattre C, Urdaci M, Schmitter J-M, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field.
Sasaki S, Kanzaki M, Kaneko T (2016) Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution. Sci Rep 6: 25728
Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24: R453-62
Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y (1998) Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci U S A 95: 1455-9
Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5: 415-8
Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87: 1157-80
Song M, Garrett WS, Chan AT (2015) Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148: 1244-60 e16
Sun F, Xu X, Wang X, Zhang B (2016) Regulation of autophagy by Ca(2). Tumour Biol
Szajewska H, Skorka A, Dylag M (2007) Meta-analysis: Saccharomyces boulardii for treating acute diarrhoea in children. Aliment Pharmacol Ther 25: 257-64
Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death And Differentiation 12: 1528
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449: 804-10
Wang X, Huycke MM (2015) Colorectal cancer: role of commensal bacteria and bystander effects. Gut Microbes 6: 370-6
Yang T, Zhang Y, Li Y, Hao Y, Zhou M, Dong N, Duan X (2013) High amounts of fluoride induce apoptosis/cell death in matured ameloblast-like LS8 cells by downregulating Bcl-2. Arch Oral Biol 58: 1165-73
Yoo TH, Lee JH, Chun HS, Chi SG (2013) alpha-Lipoic acid prevents p53 degradation in colon cancer cells by blocking NF-kappaB induction of RPS6KA4. Anticancer Drugs 24: 555-65
Zanello G, Meurens F, Berri M, Salmon H (2009) Saccharomyces boulardii effects on gastrointestinal diseases. Curr Issues Mol Biol 11: 47-58
Zhang HM, Rao JN, Guo X, Liu L, Zou T, Turner DJ, Wang JY (2004) Akt kinase activation blocks apoptosis in intestinal epithelial cells by inhibiting caspase-3 after polyamine depletion. J Biol Chem 279: 22539-47
Zou Y, Wang J, Peng J, Wei H (2016) Oregano Essential Oil Induces SOD1 and GSH Expression through Nrf2 Activation and Alleviates Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells. Oxid Med Cell Longev 2016: 5987183
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top