跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂建和
研究生(外文):Jian-He Lu
論文名稱:探討皮膚砷癌之表皮細胞異常增生及分化之分子調控機轉
論文名稱(外文):Molecular mechanisms of abnormal epidermal proliferation and differentiation in arsenical skin cancers
指導教授:余幸司余幸司引用關係
指導教授(外文):Hsin-Su Yu
口試委員:黃暉升李志宏蔡志仁張榮賢
口試委員(外文):Huei-Sheng HuangChih-Hung LeeChee-Yin ChaiLong-Sen Chang
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:153
中文關鍵詞:波文氏病ΔNp63TNF-α表皮增生發炎作用
外文關鍵詞:ArsenicBowen’s diseaseΔNp63TNF-αEpidermal proliferationInflammation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
台灣西南部沿海高砷污染地區常有區域性砷癌之發生。在砷暴露相關的癌症中,以皮膚癌最為常見,在砷引起的皮膚癌中,又以波文氏病 (一種表皮內癌) 居大多數。而人類表皮細胞動力平衡發生異常是造成皮膚病變的主因之一,此類病變若同時併發有-異生 (dysplasia)及異型性 (atypia) 的病理特徵變化,則可被定位為癌化。砷引起之人類表皮內癌的病理特性包含表皮異常增生 (acanthosis)、過度角化(keratosis)、角化異常 (dyskeratosis) 及異生 (dysplasia)。然而,砷導致波文氏病之癌化進展過程,從未在體外實驗室內發展成功。砷為化學致癌物。動物研究指出化學致癌作用由三個階段組成,包含啟動階段 (initiation)、促進階段 (promotion) 和發展階段 (progression)。然而,由於缺乏合適的多細胞構成的組織模型,因此涉及這些過程的細胞與細胞間相互作用的分子機制尚不清楚。目前我們已經利用人類角質細胞、纖維母細胞與周邊血單核細胞 (PBMC) 並在砷處理的條件下,建立了一種模擬人類表皮內癌皮膚組織培養模式。此種模擬人類表皮內癌皮膚組織培養模式能再現出砷誘導的波文氏病病理的形態學特徵,包括表皮異常增生 (acanthosis)、異生 (dysplasia) 和角化異常 (dyskeratosis) 等。因此,我們擬以此實驗模式進一步由基因及分子層面探討砷誘導皮膚癌過程中的病生理機轉。本研究論文探討: (I) 砷致表皮動態平衡異常及表皮內癌之過程中參與的基因及其調控;(II) 免疫細胞對砷引發表皮內癌過程中與表皮細胞間交互作用之功能性角色。
藉由此模擬組織培養模式,探討砷引發表皮癌化之進展過程,發現砷處理會增加表皮層的厚度,促進表皮細胞異常增生及增加鱗狀細胞之基底細胞增生指標cytokeratin 14 (CK14) 及調控表皮細胞增生之N-terminal truncated p63 isoform (ΔNp63) 基因的表現,角質細胞分化程度越高而表現量越高的分化指標cytokeratin 10 (CK10) 及調控表皮細胞分化之full-length p63 isoform (TAp63) 的表現量明顯降低。在砷處理的角質細胞處理組中,CK14及ΔNp63之表現量有增加,而CK10及TAp63之表現量則下降。藉由siRNA抑制ΔNp63基因之表現發現除了會抑制砷促進CK14表現的作用,亦會抑制砷降低TAp63與CK10之蛋白質表現的作用。在細胞模式中,我們證明砷造成的ΔNp63蛋白質表現量增加可能與波文氏病患者表皮異常增生有密切的關係。進一步利用模擬皮膚組織模式研究角質細胞與免疫細胞間交互作用對砷引發表皮內癌過程之作用機轉中,我們發現砷會刺激PBMC釋放腫瘤壞死因子-α (tumor necrosis factor-α) 而進一步促進表皮異常增生。
本論文主要是以皮膚砷癌中具代表性之波文氏病病理特徵為研究起點,並利用組織觀點進行砷引發表皮內癌過程中細胞間交互作用之分子機轉探討,所得結果可解釋皮膚砷癌波文氏病臨床與病理形態學;也期望本論文能對調控癌化過程與治療或預防提供之新的見解。
A high prevalent rate of cancers was noted in southwestern arsenism areas of Taiwan. Arsenic exposure has been demonstrated to induce human cancers. Among them, skin malignancy is one of the most commonly observed cancers. Bowen’s disease, an intraepidermal carcinoma in situ, is the main form of arsenic cancer in skin. Disruption of the epidermal cell dynamic homeostasis results in abnormal skin morphology, aberrant skin functions, and diseases. Furthermore, if dysplasia and atypia develop, a carcinogenic process is heralded. The characteristic morphologic changes including acanthosis, keratosis, dyskeratosis, and dysplasia are observed in epidermal carcinoma. Arsenic is a carcinogenic chemical. Animal studies have shown that chemical carcinogenesis consists of a three-stage process: initiation, promotion, and progression. However, because of the lack of a tissue model of arsenic carcinogenesis, the molecular mechanisms of cell-cell interactions involved in the dynamic process remain unclear. We have established a human intraepidermal carcinoma skin equivalent (SE) with organotypic culture - consisting of keratinocytes, fibroblasts, and peripheral blood mononuclear cells (PBMC) - induced by arsenic treatment. This SE reproduces the pathognomonic characteristics of arsenic-induced Bowen’s disease, including acanthosis, dysplasia, and dyskeratosis. Taking advantage of this innovative model, we set out to investigate the arsenic carcinogenesis through genomic and molecular approaches. The study aim to (Ⅰ) identify the chronological genetic focusing on disrupted epidermal homeostasis and de novo tumorigenesis of arsenic-induced intraepidermal carcinoma, and (Ⅱ) elucidate the functional roles of cellular interactions in the development of arsenic-induced intraepidermal carcinoma through immune cells mediated inflammation.
Using this SE model, we showed that arsenic increased epidermal thickness, induced abnormal proliferation, and increased expression of proliferating basal keratinocytes marker cytokeratin 14 (CK14) and N-terminal truncated p63 isoform (ΔNp63; proliferation regulator), whereas, that of the differentiation marker cytokeratin 10 (CK10) and full-length p63 isoform (TAp63; differentiation regulator) was decreased in squamous cells as compared with the control. Treatment of cultured normal human epidermal keratinocytes (HKCs) with arsenic increased CK14 and △Np63 expressions, but decreased TAp63 and CK10 expressions. Furthermore, knockdown of ΔNp63 expression by RNA interference abrogated arsenic-induced CK14 expression, and recovered the reduction of TAp63 and CK10 caused by arsenic. These findings indicated that ΔNp63 is a pivotal regulator in the abnormal cell proliferation in arsenical cancers. Furthermore, using this SE model to study the interaction between keratinocytes and immune cells in the process of arsenic-induced intraepithelial neoplasia, we showed that arsenic stimulated tumor necrosis factor-α release mainly from PBMC, which triggered abnormal epidermal proliferation.
Our data show that the cellular interaction between human keratinocytes and lymphocytes promotes the pathological characteristics of arsenic-induced Bowen''s, and provide novel insights on arsenic-modulated a carcinogenic process.
頁次
中文總摘要------------------------------------------------1
英文總摘要------------------------------------------------4
第一章 總緒論---------------------------------------------7
一、砷的致癌性--------------------------------------------8
二、砷致癌之可能機轉--------------------------------------10
三、砷致皮膚癌之可能機轉----------------------------------11
四、重建砷誘發表皮內癌之模式應用---------------------------16
五、研究目的---------------------------------------------17
第二章 砷致表皮動態平衡異常及表皮內癌之過程中參與的基因及其
調控 --------------------------------------------19
中文摘要 ------------------------------------------------20
英文摘要 ------------------------------------------------21
前言 ------------------------------------------------22
實驗方法與步驟 ----------------------------------------26
研究設計 ------------------------------------------------33
結果 ------------------------------------------------34
討論 ------------------------------------------------38
第三章 免疫細胞對砷引發表皮內癌過程中細胞間交互作用之功能性
角色---------------------------------------------42
中文摘要 ------------------------------------------------43
英文摘要 ------------------------------------------------44
前言 ------------------------------------------------45
實驗方法與步驟 ----------------------------------------48
研究設計 ------------------------------------------------55
結果 ------------------------------------------------56
討論 ------------------------------------------------60
第四章 總結與未來展望-------------------------------------64
圖表----------------------------------------------------68
參考文獻-------------------------------------------------84
附錄:本研究之相關論文發表

Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., Goyer, R., Menzer, R., Rossman, T., Thompson, C., and Waalkes, M. (1999). Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107, 593-7.
Ahmad, S., Kitchin, K. T., and Cullen, W. R. (2000). Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys 382, 195-202.
Alomari, A. K., Glusac, E. J., and McNiff, J. M. (2014). p40 is a more specific marker than p63 for cutaneous poorly differentiated squamous cell carcinoma. J Cutan Pathol 41, 839-45.
Ben-Neriah, Y., and Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12, 715-23.
Bergholz, J., and Xiao, Z. X. (2012). Role of p63 in Development, Tumorigenesis and Cancer Progression. Cancer Microenviron 5, 311-22.
Blanpain, C., and Fuchs, E. (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10, 207-17.
Candi, E., Dinsdale, D., Rufini, A., Salomoni, P., Knight, R. A., Mueller, M., Krammer, P. H., and Melino, G. (2007). TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle 6, 274-85.
Candi, E., Schmidt, R., and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6, 328-40.
Chai, C. Y., Yu, H. S., Yen, H. T., Tsai, K. B., Chen, G. S., and Yu, C. L. (1997). The inhibitory effect of UVB irradiation on the expression of p53 and Ki-67 proteins in arsenic-induced Bowen''s disease. J Cutan Pathol 24, 8-13.
Chang, C. H., Tsai, R. K., Chen, G. S., Yu, H. S., and Chai, C. Y. (1998a). Expression of bcl-2, p53 and Ki-67 in arsenical skin cancers. J Cutan Pathol 25, 457-62.
Chang, H. R., Kao, Y. H., Yu, C. L., and Yu, H. S. (2001). The effects of UVB and arsenic and their interaction on beta2-adrenergic receptors in cultured keratinocytes. Arch Dermatol Res 293, 427-9.
Chang, H. R., Yu, H. S., Chai, C. Y., Lin, Y. R., and Yu, C. L. (1998b). Arsenic induces decreased expression of beta2-adrenergic receptors in cultured keratinocytes. Arch Dermatol Res 290, 402-4.
Chen, H. W. (2007). Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bulletin of Environmental Contamination and Toxicology 78, 5-9.
Chen, Y., Graziano, J. H., Parvez, F., Liu, M., Slavkovich, V., Kalra, T., Argos, M., Islam, T., Ahmed, A., Rakibuz-Zaman, M., Hasan, R., Sarwar, G., Levy, D., van Geen, A., and Ahsan, H. (2011). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 342, d2431.
Chiang, C. T., Chu, W. K., Chow, S. E., and Chen, J. K. (2009). Overexpression of delta Np63 in a human nasopharyngeal carcinoma cell line downregulates CKIs and enhances cell proliferation. J Cell Physiol 219, 117-22.
Coussens, L. M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-7.
De Laurenzi, V., Rossi, A., Terrinoni, A., Barcaroli, D., Levrero, M., Costanzo, A., Knight, R. A., Guerrieri, P., and Melino, G. (2000). p63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem Biophys Res Commun 273, 342-6.
el-Ghalbzouri, A., Gibbs, S., Lamme, E., Van Blitterswijk, C. A., and Ponec, M. (2002). Effect of fibroblasts on epidermal regeneration. Br J Dermatol 147, 230-43.
Faurschou, A., Gniadecki, R., Calay, D., and Wulf, H. C. (2008). TNF-alpha impairs the S-G2/M cell cycle checkpoint and cyclobutane pyrimidine dimer repair in premalignant skin cells: role of the PI3K-Akt pathway. J Invest Dermatol 128, 2069-77.
Fuchs, E., and Raghavan, S. (2002). Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3, 199-209.
Gangatirkar, P., Paquet-Fifield, S., Li, A., Rossi, R., and Kaur, P. (2007). Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat Protoc 2, 178-86.
Germolec, D. R., Spalding, J., Boorman, G. A., Wilmer, J. L., Yoshida, T., Simeonova, P. P., Bruccoleri, A., Kayama, F., Gaido, K., Tennant, R., Burleson, F., Dong, W., Lang, R. W., and Luster, M. I. (1997). Arsenic can mediate skin neoplasia by chronic stimulation of keratinocyte-derived growth factors. Mutat Res 386, 209-18.
Germolec, D. R., Spalding, J., Yu, H. S., Chen, G. S., Simeonova, P. P., Humble, M. C., Bruccoleri, A., Boorman, G. A., Foley, J. F., Yoshida, T., and Luster, M. I. (1998). Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors. Am J Pathol 153, 1775-85.
Germolec, D. R., Yoshida, T., Gaido, K., Wilmer, J. L., Simeonova, P. P., Kayama, F., Burleson, F., Dong, W., Lange, R. W., and Luster, M. I. (1996). Arsenic induces overexpression of growth factors in human keratinocytes. Toxicol Appl Pharmacol 141, 308-18.
Gu, X., Lundqvist, E. N., Coates, P. J., Thurfjell, N., Wettersand, E., and Nylander, K. (2006). Dysregulation of TAp63 mRNA and protein levels in psoriasis. J Invest Dermatol 126, 137-41.
Hall, M., Chen, Y., Ahsan, H., Slavkovich, V., van Geen, A., Parvez, F., and Graziano, J. (2006). Blood arsenic as a biomarker of arsenic exposure: results from a prospective study. Toxicology 225, 225-33.
Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74.
Hsu, C. H., Yang, S. A., Wang, J. Y., Yu, H. S., and Lin, S. R. (1999). Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan. Br J Cancer 80, 1080-6.
Hsueh, Y. M., Huang, Y. L., Huang, C. C., Wu, W. L., Chen, H. M., Yang, M. H., Lue, L. C., and Chen, C. J. (1998). Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. Journal of Toxicology and Environmental Health-Part A 54, 431-444.
Hunt, K. M., Srivastava, R. K., Elmets, C. A., and Athar, M. (2014). The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 354, 211-9.
IARC (1980). Arsenic and arsenic compounds. IARC Monogr Eval Carcinog Risk Chem Hum 23, 39-141.
Ichikawa, T., Suenaga, Y., Koda, T., Ozaki, T., and Nakagawara, A. (2008). TAp63-dependent induction of growth differentiation factor 15 (GDF15) plays a critical role in the regulation of keratinocyte differentiation. Oncogene 27, 409-20.
Jessen, B. A., Qin, Q., Phillips, M. A., Phillips, D. L., and Rice, R. H. (2001). Keratinocyte differentiation marker suppression by arsenic: mediation by AP1 response elements and antagonism by tetradecanoylphorbol acetate. Toxicol Appl Pharmacol 174, 302-11.
Joint FAO/WHO Expert Committee on Food Additives, J. (2010). "Arsenic," World Health Organization.
Kanitakis, J., and Chouvet, B. (2007). Expression of p63 in cutaneous metastases. Am J Clin Pathol 128, 753-8.
Karin, M., and Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749-59.
King, K. E., Ponnamperuma, R. M., Yamashita, T., Tokino, T., Lee, L. A., Young, M. F., and Weinberg, W. C. (2003). deltaNp63alpha functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. Oncogene 22, 3635-44.
Kitchin, K. T. (2001). Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172, 249-61.
Klimecki, W. T., Borchers, A. H., Egbert, R. E., Nagle, R. B., Carter, D. E., and Bowden, G. T. (1997). Effects of acute and chronic arsenic exposure of human-derived keratinocytes in an In Vitro human skin equivalent system: a novel model of human arsenicism. Toxicol In Vitro 11, 89-98.
Kojima, C., Ramirez, D. C., Tokar, E. J., Himeno, S., Drobna, Z., Styblo, M., Mason, R. P., and Waalkes, M. P. (2009). Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 101, 1670-81.
Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J., and Roop, D. R. (2004). p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18, 126-31.
Koster, M. I., and Roop, D. R. (2004a). The role of p63 in development and differentiation of the epidermis. J Dermatol Sci 34, 3-9.
Koster, M. I., and Roop, D. R. (2004b). Transgenic mouse models provide new insights into the role of p63 in epidermal development. Cell Cycle 3, 411-3.
Lan, C. E., Wang, Y. T., Lu, C. Y., Fang, A. H., and Wu, C. S. (2017). The effect of interaction of heat and UVB on human keratinocyte: Novel insights on UVB-induced carcinogenesis of the skin. J Dermatol Sci 88, 207-215.
Lee, C. H., Hong, C. H., Yu, C. L., Wang, L. F., Clausen, B. E., Liao, W. T., Huang, S. K., Chen, G. S., and Yu, H. S. (2012). Arsenic mobilizes Langerhans cell migration and induces Th1 response in epicutaneous protein sensitization via CCL21: a plausible cause of decreased Langerhans cells in arsenic-induced intraepithelial carcinoma. Biochem Pharmacol 83, 1290-9.
Lee, C. H., Wu, S. B., Hong, C. H., Chen, G. S., Wei, Y. H., and Yu, H. S. (2013). Involvement of mtDNA damage elicited by oxidative stress in the arsenical skin cancers. J Invest Dermatol 133, 1890-900.
Lee, C. H., Wu, S. B., Hong, C. H., Liao, W. T., Wu, C. Y., Chen, G. S., Wei, Y. H., and Yu, H. S. (2011). Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers. Am J Pathol 178, 2066-76.
Lee, C. H., Yu, C. L., Liao, W. T., Kao, Y. H., Chai, C. Y., Chen, G. S., and Yu, H. S. (2004). Effects and interactions of low doses of arsenic and UVB on keratinocyte apoptosis. Chem Res Toxicol 17, 1199-205.
Lemarie, A., Morzadec, C., Bourdonnay, E., Fardel, O., and Vernhet, L. (2006). Human macrophages constitute targets for immunotoxic inorganic arsenic. J Immunol 177, 3019-27.
Leonard, M. K., Kommagani, R., Payal, V., Mayo, L. D., Shamma, H. N., and Kadakia, M. P. (2011). DeltaNp63alpha regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ 18, 1924-33.
Liao, W. T., Chang, K. L., Yu, C. L., Chen, G. S., Chang, L. W., and Yu, H. S. (2004). Arsenic induces human keratinocyte apoptosis by the FAS/FAS ligand pathway, which correlates with alterations in nuclear factor-kappa B and activator protein-1 activity. J Invest Dermatol 122, 125-9.
Liao, W. T., Lan, C. C., Lee, C. H., and Yu, H. S. (2011). Concentration-dependent cellular responses of arsenic in keratinocytes. Kaohsiung J Med Sci 27, 390-5.
Liao, W. T., Lu, J. H., Lee, C. H., Lan, C. E., Chang, J. G., Chai, C. Y., and Yu, H. S. (2016). An Interaction between Arsenic-Induced Epigenetic Modification and Inflammatory Promotion in a Skin Equivalent during Arsenic Carcinogenesis. J Invest Dermatol.
Liao, W. T., Lu, J. H., Lee, C. H., Lan, C. E., Chang, J. G., Chai, C. Y., and Yu, H. S. (2017). An Interaction between Arsenic-Induced Epigenetic Modification and Inflammatory Promotion in a Skin Equivalent during Arsenic Carcinogenesis. J Invest Dermatol 137, 187-196.
Liao, W. T., Yu, C. L., Lan, C. C., Lee, C. H., Chang, C. H., Chang, L. W., You, H. L., and Yu, H. S. (2009). Differential effects of arsenic on cutaneous and systemic immunity: focusing on CD4+ cell apoptosis in patients with arsenic-induced Bowen''s disease. Carcinogenesis 30, 1064-72.
Liefer, K. M., Koster, M. I., Wang, X. J., Yang, A., McKeon, F., and Roop, D. R. (2000). Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 60, 4016-20.
Loeb, L. A., and Harris, C. C. (2008). Advances in chemical carcinogenesis: a historical review and prospective. Cancer Res 68, 6863-72.
Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., and Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121, 295-302.
Nestle, F. O., Di Meglio, P., Qin, J. Z., and Nickoloff, B. J. (2009). Skin immune sentinels in health and disease. Nat Rev Immunol 9, 679-91.
Nishi, H., Senoo, M., Nishi, K. H., Murphy, B., Rikiyama, T., Matsumura, Y., Habu, S., and Johnson, A. C. (2001). p53 Homologue p63 represses epidermal growth factor receptor expression. J Biol Chem 276, 41717-24.
Oliveira, P. A., Colaco, A., Chaves, R., Guedes-Pinto, H., De-La-Cruz, P. L., and Lopes, C. (2007). Chemical carcinogenesis. An Acad Bras Cienc 79, 593-616.
Osada, M., Ohba, M., Kawahara, C., Ishioka, C., Kanamaru, R., Katoh, I., Ikawa, Y., Nimura, Y., Nakagawara, A., Obinata, M., and Ikawa, S. (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 4, 839-43.
Owens, D. M. (2007). p53, chemokines, and squamous cell carcinoma. J Clin Invest 117, 1752-5.
Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., Park, J. H., and Chi, S. G. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res 60, 3370-4.
Park, J. W., Choi, Y. J., Jang, M. A., Baek, S. H., Lim, J. H., Passaniti, T., and Kwon, T. K. (2001). Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochem Biophys Res Commun 286, 726-34.
Perkins, C., Kim, C. N., Fang, G., and Bhalla, K. N. (2000). Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood 95, 1014-22.
Qu, M., Muller, H. K., and Woods, G. M. (1997). Chemical carcinogens and antigens contribute to cutaneous tumor promotion by depleting epidermal Langerhans cells. Carcinogenesis 18, 1277-9.
Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgrad Med J 79, 391-6.
Ratovitski, E. A., Patturajan, M., Hibi, K., Trink, B., Yamaguchi, K., and Sidransky, D. (2001). p53 associates with and targets Delta Np63 into a protein degradation pathway. Proc Natl Acad Sci U S A 98, 1817-22.
Reis-Filho, J. S., Simpson, P. T., Martins, A., Preto, A., Gartner, F., and Schmitt, F. C. (2003). Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 neoplastic human tissue samples using TARP-4 multi-tumor tissue microarray. Virchows Arch 443, 122-32.
Reznikova, T. V., Phillips, M. A., and Rice, R. H. (2009). Arsenite suppresses Notch1 signaling in human keratinocytes. J Invest Dermatol 129, 155-61.
Roboz, G. J., Dias, S., Lam, G., Lane, W. J., Soignet, S. L., Warrell, R. P., Jr., and Rafii, S. (2000). Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96, 1525-30.
Romano, R. A., Birkaya, B., and Sinha, S. (2007). A functional enhancer of keratin14 is a direct transcriptional target of deltaNp63. J Invest Dermatol 127, 1175-86.
Sasaki, Y., Ishida, S., Morimoto, I., Yamashita, T., Kojima, T., Kihara, C., Tanaka, T., Imai, K., Nakamura, Y., and Tokino, T. (2002). The p53 family member genes are involved in the Notch signal pathway. J Biol Chem 277, 719-24.
Shimada, A., Kato, S., Enjo, K., Osada, M., Ikawa, Y., Kohno, K., Obinata, M., Kanamaru, R., Ikawa, S., and Ishioka, C. (1999). The transcriptional activities of p53 and its homologue p51/p63: similarities and differences. Cancer Res 59, 2781-6.
Smedley, P. L., and Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17, 517-568.
Snow, E. T. (1992). Metal carcinogenesis: mechanistic implications. Pharmacol Ther 53, 31-65.
Stark, H. J., Boehnke, K., Mirancea, N., Willhauck, M. J., Pavesio, A., Fusenig, N. E., and Boukamp, P. (2006). Epidermal homeostasis in long-term scaffold-enforced skin equivalents. J Investig Dermatol Symp Proc 11, 93-105.
Stark, H. J., Willhauck, M. J., Mirancea, N., Boehnke, K., Nord, I., Breitkreutz, D., Pavesio, A., Boukamp, P., and Fusenig, N. E. (2004). Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. Eur J Cell Biol 83, 631-45.
States, J. C., Barchowsky, A., Cartwright, I. L., Reichard, J. F., Futscher, B. W., and Lantz, R. C. (2011). Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect 119, 1356-63.
Stoitzner, P., Green, L. K., Jung, J. Y., Price, K. M., Tripp, C. H., Malissen, B., Kissenpfennig, A., Hermans, I. F., and Ronchese, F. (2008). Tumor immunotherapy by epicutaneous immunization requires langerhans cells. J Immunol 180, 1991-8.
Tan, K. B., Tan, S. H., Aw, D. C., Jaffar, H., Lim, T. C., Lee, S. J., and Lee, Y. S. (2013). Simulators of squamous cell carcinoma of the skin: diagnostic challenges on small biopsies and clinicopathological correlation. J Skin Cancer 2013, 752864.
Trosko, J. E., and Tai, M. H. (2006). Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells. Contrib Microbiol 13, 45-65.
Trouba, K. J., Wauson, E. M., and Vorce, R. L. (2000). Sodium arsenite-induced dysregulation of proteins involved in proliferative signaling. Toxicol Appl Pharmacol 164, 161-70.
Truong, A. B., Kretz, M., Ridky, T. W., Kimmel, R., and Khavari, P. A. (2006). p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 20, 3185-97.
Tseng, W. P., Chu, H. M., How, S. W., Fong, J. M., Lin, C. S., and Yeh, S. (1968). Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40, 453-63.
Tucci, P., Agostini, M., Grespi, F., Markert, E. K., Terrinoni, A., Vousden, K. H., Muller, P. A., Dotsch, V., Kehrloesser, S., Sayan, B. S., Giaccone, G., Lowe, S. W., Takahashi, N., Vandenabeele, P., Knight, R. A., Levine, A. J., and Melino, G. (2012). Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A 109, 15312-7.
Udensi, U. K., Tackett, A. J., Byrum, S., Avaritt, N. L., Sengupta, D., Moreland, L. W., Tchounwou, P. B., and Isokpehi, R. D. (2014). Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide. J Proteomics Bioinform 7, 166-178.
Uslu, R., Sanli, U. A., Sezgin, C., Karabulut, B., Terzioglu, E., Omay, S. B., and Goker, E. (2000). Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. Clin Cancer Res 6, 4957-64.
van Bokhoven, H., and Brunner, H. G. (2002). Splitting p63. Am J Hum Genet 71, 1-13.
Viticchie, G., Agostini, M., Lena, A. M., Mancini, M., Zhou, H., Zolla, L., Dinsdale, D., Saintigny, G., Melino, G., and Candi, E. (2015). p63 supports aerobic respiration through hexokinase II. Proc Natl Acad Sci U S A 112, 11577-82.
Waalkes, M. P., Liu, J., Germolec, D. R., Trempus, C. S., Cannon, R. E., Tokar, E. J., Tennant, R. W., Ward, J. M., and Diwan, B. A. (2008). Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Res 68, 8278-85.
Waalkes, M. P., Liu, J., Ward, J. M., and Diwan, B. A. (2004a). Animal models for arsenic carcinogenesis: inorganic arsenic is a transplacental carcinogen in mice. Toxicol Appl Pharmacol 198, 377-84.
Waalkes, M. P., Ward, J. M., and Diwan, B. A. (2004b). Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis 25, 133-41.
Wang, D. Y., Cheng, C. C., Kao, M. H., Hsueh, Y. J., Ma, D. H., and Chen, J. K. (2005). Regulation of limbal keratinocyte proliferation and differentiation by TAp63 and DeltaNp63 transcription factors. Invest Ophthalmol Vis Sci 46, 3102-8.
Westfall, M. D., Mays, D. J., Sniezek, J. C., and Pietenpol, J. A. (2003). The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol 23, 2264-76.
WHO (2001). "Environ health criteria: arsenic and arsenic compounds," World Health Organization.
WHO (2003). "Arsenic, drinking-water and health risk substitution in arsenic mitigation: A discussion paper," World Health Organization.
Wu, G., Nomoto, S., Hoque, M. O., Dracheva, T., Osada, M., Lee, C. C., Dong, S. M., Guo, Z., Benoit, N., Cohen, Y., Rechthand, P., Califano, J., Moon, C. S., Ratovitski, E., Jen, J., Sidransky, D., and Trink, B. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 63, 2351-7.
Wu, Y., Liu, H., and Li, J. (2007). Expression of p63 and cyclooxygenase-2 and their correlation in skin tumors. J Huazhong Univ Sci Technolog Med Sci 27, 206-8.
Xu, Y., Tokar, E. J., and Waalkes, M. P. (2014). Arsenic-induced cancer cell phenotype in human breast epithelia is estrogen receptor-independent but involves aromatase activation. Arch Toxicol 88, 263-74.
Yan, W., Chen, X., Zhang, Y., Zhang, J., Jung, Y. S., and Chen, X. (2013). Arsenic suppresses cell survival via Pirh2-mediated proteasomal degradation of DeltaNp63 protein. J Biol Chem 288, 2907-13.
Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., Andrews, N. C., Caput, D., and McKeon, F. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2, 305-16.
Yeh, S., How, S. W., and Lin, C. S. (1968). Arsenical cancer of skin. Histologic study with special reference to Bowen''s disease. Cancer 21, 312-39.
Yu, H. S., Chang, K. L., Yu, C. L., Wu, C. S., Chen, G. S., and Ho, J. C. (1998). Defective IL-2 receptor expression in lymphocytes of patients with arsenic-induced Bowen''s disease. Arch Dermatol Res 290, 681-7.
Yu, H. S., Chen, G. S., Sheu, H. M., Kao, J. S., Chang, K. L., and Yu, C. L. (1992). Alterations of skin-associated lymphoid tissue in the carcinogenesis of arsenical skin cancer. Proc Natl Sci Counc Repub China B 16, 17-22.
Yu, H. S., Lee, C. H., Jee, S. H., Ho, C. K., and Guo, Y. L. (2001). Environmental and occupational skin diseases in Taiwan. J Dermatol 28, 628-31.
Yu, H. S., Liao, W. T., and Chai, C. Y. (2006). Arsenic carcinogenesis in the skin. J Biomed Sci 13, 657-66.
Yu, H. S., Liao, W. T., Chang, K. L., Yu, C. L., and Chen, G. S. (2002). Arsenic induces tumor necrosis factor alpha release and tumor necrosis factor receptor 1 signaling in T helper cell apoptosis. J Invest Dermatol 119, 812-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊