(3.236.228.250) 您好!臺灣時間:2021/04/13 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李偉彰
研究生(外文):Li, Wei-Zhang
論文名稱:深紫外發光二極體和傳統紫外汞燈對經淨水器處理後的污水細菌總數影響
論文名稱(外文):Number of Bacteria in Sewage through Water Purifier affected by DUV-LED and Traditional UV Mercury Lamp
指導教授:林俊良林俊良引用關係
指導教授(外文):Lin, Chun-Liang
口試委員:張品全林佳民
口試委員(外文):Chang, Ping-ChuanLin, Jia-Min
口試日期:2018-06-23
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:40
中文關鍵詞:深紫外光發光二極體汞燈淨水器細菌量
外文關鍵詞:Deep ultraviolet light emitting diodesmercury lampswater purifiersbacteria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文討論傳統汞燈與深紫外光發光二極體(DUVLED)對汙水中細菌總量的影響,取用「崑山科技大學中水處理廠」之汙水進行殺菌效果研究,分為兩個實驗進行;實驗一:研究採用傳統汞燈光源水殺菌器的殺菌能力,並探討其延伸應用設計。實驗二:以DUVLED光源取代實驗一水殺菌器的汞燈,並探討其殺菌能力。
實驗一採用市售小型水殺菌器不銹鋼腔體,經自行設計並改造後,搭配汞燈光源所構成。汞燈耗電8 W、主要波長為253.7 nm、 點亮10 min後光輸出可達穩態,汞燈距離不鏽鋼腔體內壁、輻射照度檢測窗口的最近距離分別為1.2、4.4 cm,對應的輻射照度為2.0、0.6 mW/cm2。參考美國美國國家衛生基金會(NSF)與美國國家表準協會(ANSI)的汙水處理規範,汙水於容積250 ml的腔體中,以2.0 mW/cm2輻射照度照射,處理的時間至少需要20 sec,因此流量須小於750 ml/min。
未經汞燈照射之汙水生菌數為53×104 CFU/ml,點亮汞燈10 min讓光輸出達穩態後,進行兩種條件之殺菌檢測;條件一:不銹鋼腔體填滿汙水並靜置照UV光,照射時間分別為30、60 sec,經照射後發現汙水菌含量與未照射之汙水生菌數差不多,表示本研究之水殺菌器不適用於靜置式的水處理。條件二:汙水分別以200與400 ml/min流量並照UV光後,汙水含菌量為60與120 CFU/ml,殺菌率分別達到99.99%與99.98%,透過線性內插推論,當流量低於333 ml/min時,可達到我國環保署飲用水菌含量標準(<100 CFU/ml),水在不銹鋼腔體中停留時間約45 sec,接收到的輻射能量為90 mJ/cm2。

實驗二延續採用實驗一之腔體,並將光源替換為DUVLED,單顆DUVLED耗電1.5 W,採用265 nm、275 nm及280 nm等三種不同波長,點亮10 min後光輸出可達到穩態,在距離DUVLED 1.2 cm處之輻射照度分別為0.32、0.35及0.40 mW/cm2,參考美國NSF與ANSI的汙水處理規範,汙水需處理的時間分別至少為125、115及100 sec,因此流量分別須小於120、131及150 ml/min。
未經DUVLED照射之汙水總生菌數為27×107 CFU/ml,LED點亮後直接進行兩種條件之殺菌檢測;條件一:腔體充滿水,進行靜置式照射,照射30、60與120 sec,三個波段的殺菌效果跟實驗一一樣不理想,從結果上看不出來波長的影響,且發現隨著時間增加,含菌量有增加的趨勢,推測主因是DUVLED殺菌效力不足導致的,另一個可能性則是,DUVLED原始菌量過多,導致水處理效果不佳;條件二:以100 ml/min、200 ml/min與400 ml/min之流量進行UV光照射後,三個波長之DUVLED效果最佳之波長為280 nm,其在三個流量下含菌量與殺菌率分別為100 ml/min下之0.4×107 CFU/ml (98.5%)、200 ml/min下之1.0×107 CFU/ml (94.8%) 與400 ml/min 下之1.4×107 CFU/ml (96.3%),效果其次依序為265 nm與275 nm的DUVLED。本研究水殺菌器中,適合用於流動式的水殺菌處理,而在流量100 ml/min時,經UV光照射後,發現DUVLED依然未能達到我國環保署飲用水菌含量標準(<100 CFU/ml),估計是DUVLED距離1.2 cm之輻射照度遠低於汞燈將近6倍,導致殺菌效果不理想,要應用於本研究之水處理器,可能須再提升其的輻射照度,或者是再調整更小的流量來進行實驗,才能接近或低於標準值,根據這樣的殺菌效果,之後會進行多級的水處理器連接方式,讓待測物不僅僅接收一次的UV光照射,優化最終的殺菌結果。

In this paper, the effect of traditional mercury lamps and deep ultraviolet light emitting diodes (DUV LEDs) on total bacteria in sewage collected from "Water Treatment Plant of Kun Shan University " has been discussed.
This study was divided into two experiments. In the experiment I, the sterilizing ability of a water sterilizer using a traditional mercury lamp light source was studied, and its extended application design was probed. In the experiment II, the mercury lamp of the experiment I water sterilizer was replaced by a DUV LED light source, and its sterilizing ability was probed.
Experiment I the stainless steel cavity of a commercially available small-sized water sterilizer has been designed and modified, and is composed of a mercury lamp light source. The mercury lamp consumes 8 W of power, and the main peak of wavelength is 253.7 nm. The steady-state light output is reached after turn on for 10 minutes. The closest distance from the mercury lamp to the inside wall of the stainless steel cavity and the mercury lamp to the irradiance detection window are 1.2 and 4.4 cm, respectively. And the corresponding irradiance is 2.0 and 0.6 mW/cm2.
Reference to the Sewage Treatment Regulations developed by both the United States National Sanitation Foundation (NSF) and the American National Standards Association (ANSI), sewage is irradiated by mercury lamp in a volume of 250 ml with an UVC irradiance of 2.0 mW/cm2 , the treatment time is at least 20 sec, so the flow rate must be less than 750 ml/min.
The number of bacteria in the sewage before mercury lamp irradiation was 53×104 CFU/ml. After the mercury lamp is turned on for 10 min to allow the light output to reach a steady state, two conditions of sterilizing detection are performed. Condition 1, The stainless steel cavity is filled with sewage and exposed to UV light for 30 and 60 sec, respectively. After irradiation, it was found that the amount of bacteria was similar to that of unirradiated sewage, The water sterilizer regarding of this study was found to be unsuitable for standing water treatment, because the dead spots in some places that have not been irradiated, resulting in a failure to achieve the desired sterilization. Condition 2, after sewage is irradiated with UV light at flow rates of 200 and 400 ml/min, the bacteria content in the sewage was 60 and 120 CFU/ml respectively. And the sterilization rate reached 99.99% and 99.98%, respectively.
Based on the linear interpolation, when the flow rate is less than 333 ml/min, it can meet the taiwan Environmental Protection Agency standards for drinking water bacteria (<100 CFU/ml). The residence time of sewage in the stainless steel cavity is about 45 sec, and the accumulated radiation energy received is 90 mJ/cm2.
Experiment II continues to use the cavity of experiment 1, and replaces the light source with DUVLED. A single DUVLED consumes 1.5 W and adopts three different wavelengths, 265 nm, 275 nm, and 280 nm, and the light output can reach a steady state after 10 minutes of lighting. The illuminance at a distance of 1.2 cm from the DUVLED is 0.32, 0.35 and 0.40 mW/cm2 respectively. Referring to the US NSF and ANSI wastewater treatment specifications, the wastewater needs to be treated for at least 125, 115, and 100 sec, respectively, so the flow rate Must be less than 120, 131, and 150 ml/min, respectively.
The total number of bacteria in the sewage not irradiated by DUVLED is 27×107 CFU/ml. After the LED is turned on, two kinds of sterilizing tests are directly performed. Condition 1, The chamber is filled with water, and the stationary irradiation is performed. The irradiation is 30, 60 and At 120 sec, the bactericidal effects of the three bands were not as good as those of the first experiment. The effect of wavelength was not seen from the results, and it was found that as the time increased, the bacteria content increased, presumably due to the lack of sterilization efficacy of DUVLED. The other possibility is that DUVLED has too much original bacteria, resulting in poor water treatment; Condition 2, After UV light irradiation at 100 ml/min, 200 ml/min and 400 ml/min, three The wavelength of the DUVLED at three flow rates with the best wavelength is 280 nm, and its bacteria and sterilization rate are 0.4×107 CFU/ml (98.5%) at 100 ml/min and 1.0×107 CFU/ml (94.8%) at 200 ml/min and 1.4×107 CFU/ml (96.3%) at 400 ml/min, followed by sequential DUVLEDs at 265 nm and 275 nm. In this research water sterilizer, it is suitable for the flow type water sterilizing treatment. At the flow rate of 100 ml/min, after being irradiated by UV light, it was found that the DUVLED still failed to meet the standards of the national EPA drinking water bacteria (<100 CFU) /ml) It is estimated that the radiation intensity of the DUVLED is 1.2 cm away from that of the mercury lamp, which is nearly 6 times that of the mercury lamp, resulting in an unsatisfactory sterilization effect. To be applied to the water processor of this study, it may be necessary to increase its illuminance, or Adjust the smaller flow rate for experimentation to get closer to or lower than the standard value. According to this sterilizing effect, a multi-stage water processor connection method will be performed later to allow the test object to receive more than one UV light, optimizing the final result. The sterilization result.

目 錄
中文摘要 ii
ABSTRACT iv
目 錄 v
表目錄 vii
圖目錄 viii
第1章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.2.1 文獻回顧 3
第2章 基礎原理 10
2.1 紫外線殺菌、消毒與特性 10
2.1.1 殺菌原理 11
2.1.2 UVC對細菌及病毒的影響 12
2.2 殺菌成效指標 12
2.2.1 菌落形成單位(CFU) 12
2.2.2 殺菌效率(Log inactivation) 12
2.3 參考規範 13
2.3.1 飲用水水質標準 13
2.3.2 NSF/ ANSI 55紫外線消毒規範 13
第3章 實驗目的與重要結果 14
第4章 實驗相同處 16
4.1 材料 16
4.2 設備 18
4.3 方法 20
4.3.1 方法一 靜置式水處理 20
4.3.2 方法二 流動式水處理 20
第5章 汞燈水殺菌器的效能探討 22
5.1 實驗架構 23
5.2 實驗材料 24
5.3 水處理器 24
5.4 實驗結果 25
5.4.1 汞燈光輸出穩定時間 25
5.4.2 距離與輻射照度 25
5.4.3 汞燈各距離之輻射照度與NSF/ANSI 55規範 26
5.4.4 汞燈殺菌實驗結果 26
5.4.5 殺菌效率(Log inactivation)指標 28
第6章 DUVLED水殺菌器的效能探討 29
6.1 實驗架構 30
6.2 實驗材料 31
6.3 水處理器 31
6.4 實驗結果 32
6.4.1 DUVLED燈光輸出穩定時間 32
6.4.2 距離與輻射照度 33
6.4.3 DUVLED各距離之輻射照度與NSF/ANSI 55規範 34
6.4.4 DUVLED殺菌實驗結果 34
6.4.5 殺菌效率(Log inactivation)指標 36
第7章 結論與未來展望 38
參考文獻 39


參考文獻
[1]NSF/ANSI 55: ULTRAVIOLET MICROBIOLOGICAL WATER TREATMENT SYSTEMS.pdf
[2]黃柏誠,“大面積高功率發光二極體導光元件之設計”,碩士論文,國立中央大學,2004。
[3]劉如熹及林益山,“人類未來照明的夢想”,第390期,科學發展,2005,第56-59頁。
[4]黃詩桓,”紫外光發光二極體封裝與混光研究及在殺菌上之應用”,碩士論文,長庚大學,2015。
[5]C. Sauska, G. Csoknyai & D. Packlocok, “ULTRAVIOLET WATER PURIFI-CATION SYSTEM WITH VARIABLE INTENSITY CONTROL”, US5230792, 1993。
[6]Dana J. Brandt & Chris A. Klebaum, “METHOD AND APPARATUS FORA UV LIGHT DISINFECTION SYSTEM”, US6132784, 2000。
[7]M. Maiden & R. Watkins, “HAND-HELD ULTRAVIOLET WATER PURIFI-CATION SYSTEM”, US5900212, 1999。
[8]Hsi-Hu Tsai, “STRUCTURE OF WATER TANK WITH ULTRAVIOLET-RAY STERILIZATION LAMP”, US6547963B1, 2003。
[9]Y. Muramoto, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp”, Semiconductor Science and Technology, Technol.29, pp.084004-1 ~ 084004-8, Jun. 6, 2014。
[10]中山市秉一電子科技有限公司、趙延民,中國發明專利”UV LED消毒水杯”,CN103720192A,2013。
[11]青島雲路新能源科技有限公司、李曉雨、藍榮鑫、鄭秋月及蔡興田,中國發明專利”深紫外LED殺菌裝置”,CN103951008A,2014。
[12]安特藍德公司、本杰明•卡恩、邁克爾•克特澤爾、Z•瓦迪爾及Y•羅森貝格,中國發明專利申請案” 用於通過從發光二極管發射的光進行液體消毒的方法和裝置”,CN105164056A,2015。
[13]人造太陽 紫外線-C(http://www.teamye.com.tw/uv-c/uv_c_a.htm)
[14]葉純宜,”紫外線殺菌效能探討”,國立陽明大學醫學系(https://www.nics.org.tw/old_nics/magazine/15/05/15-5-3.htm#)
[15]菌落形成單位,維基百科
[16]中華民國行政院環境保護局,飲用水水質標準
[17]K. Oguma, “Application of UV light emitting diodes to batch and flow-through water disinfection systems”, Journal of Desalination, vol. 328, PP. 24 - 30, 2013
[18]C. Chatterley & K. Linden, “Demonstration and evaluation of germicidal UV-LEDs for point-of-use water disinfection”, Journal of Water and Health, vol. 3, pp. 479~486, Sep. 2010.
[19]K. Oguma, R. Kita & S. Takizawa, “Effects of Arrangement of UV Light-Emitting Diodes on the Inactivation Efficiency of Microorganisms in Wa-ter”, Journal of Photochemistry and Photobiology, vol. 92, pp. 314~317, Jan. 2016.

電子全文 電子全文(網際網路公開日期:20230626)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔