跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育禎
研究生(外文):Yu-Chen Chang
論文名稱:具自修復機能之氧化銫鎢 / 聚氨酯智能塗層
論文名稱(外文):Cesium Tungsten Oxide / Polyurethane Smart Coating with Self-Healing Function
指導教授:蔡平賜蔡平賜引用關係
指導教授(外文):Ping-Szu Tsai
口試委員:王宗櫚謝達華
口試委員(外文):Tzong-Liu WangTar-Hwa Hsieh
口試日期:2018-07-03
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:116
中文關鍵詞:智能材料自修復聚氨酯光轉熱效應氧化銫鎢
外文關鍵詞:smart materialsself-healingpolyurethanephotothermal effectcesium tungsten oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
塗料在日常生活中有著裝飾與保護披覆物等重要功能,廣泛被人使用。因此本研究以光轉熱材料添加入新型聚氨酯塗料內,賦予塗膜自修復機制成為智能材料,於外傷後能進行自我修復,提升使用壽命。首先探討以聚酯二元醇作為長鏈寡聚物/含雙硫鍵之二元醇作為鏈延長劑之比例對自修復聚氨酯塗膜的物性及損傷後修復性之影響。再將自修復聚氨酯塗料混摻本實驗室研發之改質氧化銫鎢,探討氧化銫鎢之光轉熱效應對塗膜熱修復及物性的影響。
實驗結果顯示,當寡聚物/鏈延長劑比例為 1:4,自修復聚氨酯塗膜硬度可上升至 F,結晶可於 43℃ 熔融,並於 60℃ 完成修復。其它比例之塗膜的分子量皆於 28770 ~ 90757 之間,並具有良好的成膜能力。DSC 熔融範圍皆於 40~45℃之間,與光學顯微鏡所觀察相符。光學顯微照片也顯示所有塗膜皆具重複多次修復能力。
接著添加 0.03wt% 之氧化銫鎢的塗膜在模擬太陽光照射 60 分鐘後,塗膜表面溫度可達 51℃,明顯高於不含氧化銫鎢塗膜表面的 47℃;此外經光學顯微鏡觀察也證實氧化銫鎢粒子之光轉熱效應能使塗膜直接進行熱修復。另外添加氧化銫鎢後之塗膜硬度可由F上升至H,附著力可由4提升至2。
Coatings are widely used because they have important functions such as decoration and protective covering in daily life. In this study, the new smart polyurethane (PU) coatings were fabricated by adding photothermal materials. They could repair themselves to extend their service life after damage. First, the effect of the ratio of the polyester diols used as long-chain oligomers and disulfide-containing diols as chain extenders on the physical properties and post-injury repair of self-healing PU coatings was investigated. Second, the self-healing PU coating was mixed with the hydrophobic modified cesium tungsten oxide which has been fabricated by our laboratory. The effect of the photothermal influence of cesium tungsten oxide on the physical properties and heat healing of the coatings was studied.
The experimental results showed that the hardness of PU coating could increase to F grade, melt at 43℃ and repair complete at 60℃, which on the condition of the ratio of oligomer and chain extender was 1:4. The other ratios of the PU coating had the molecular weight between 28770 and 90757. These coatings all have good film forming ability. Optical micrographs also showed that all films had the ability to repair themselves repeatedly.
Compared with non-cesium tungsten oxide coating, which surface temperature of 47℃, the temperature of the coating with 0.03wt% cesium tungsten oxide was above 51℃, after 60 minutes of irradiation from a solar simulator. In addition, the hardness and adhesion of the coating after adding cesium tungsten oxide could rise from F to H and 4 to 2.

摘要 I
Abstract III
誌謝 V
目錄 VII
表目錄 X
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究內容 3
第二章 相關知識與文獻回顧 4
2-1 聚氨酯的介紹 4
2-1-1 聚氨酯的應用 5
2-1-2 聚氨酯常用之原料 6
2-1-3 聚氨酯之結構與合成 15
2-2 影響聚氨酯性能的條件 17
2-3 自我修復材料機制 18
2-4 外在型自修復機制 19
2-4-1 包埋型自修復 20
2-4-2 血管網絡型自我修復 23
2-5 內在型自修復機制 25
2-5-1 熱可逆 Diels-Alder 自修復系統 28
2-5-2 醯腙鍵 (Acylhydrazones bond) 自修復系統 30
2-5-3 烷氧胺鍵 (Alkoxyamine) 自修復系統 33
2-5-4 雙硫鍵(Disulfides)自修復系統 35
2-6 氧化銫鎢 (Cesium Tungsten Oxide) 44
第三章 實驗所需試藥及設備與實驗方法 46
3-1 實驗藥品 46
3-2 實驗器材 49
3-3 實驗方法 50
3-4 實驗儀器 54
3-5 測試方法 64
第四章 結果與討論 71
4-1 塗料之結構鑑定 71
4-1-1 官能基分析 71
4-1-2 特殊鍵結分析 73
4-2 塗膜之基本物性 74
4-2-1 分子量分析 74
4-2-2 附著性測試 75
4-2-3 鉛筆硬度測試 76
4-2-4 接觸角測試 77
4-2-5 耐水性測試 78
4-3 塗料之儲存穩定性 80
4-3-1 熱重損失分析 80
4-3-2 熔融範圍分析 83
4-3-3 粒子分散測試 85
4-4 塗膜之修復性質 87
4-4-1 自修復能力測試 87
4-4-2 光轉熱性質測試 98
第五章 結論 101
5-1 結論 101
5-2 建議 103
第六章 參考文獻 104
自傳 116


[1]T. Osswald, G. Menges, “Failure and Damage of Polymers”, Materials Science of Polymers for Engineers, Hanser Published, Munich, 2003, 447-519.
[2]J. W. C. Pang, I. P. Bond, “Bleeding Composites-Damage Detection and Self-Repair Using a Biomimetic Approach”, Composites Part A: Applied Science and Manufacturing, 2005, 36, 2, 183-188.
[3]N. K. Guimard, K. K. Oehlenschlaeger, J. Zhou, S. Hilf, F. G. Schmidt, C. Barner-Kowollik, “Current Trends in the Field of Self-Healing Materials”, Macromolecular Chemistry and Physics, 2012, 213, 2, 131-143.
[4]S. Billiet, X. K. D. Hillewaere, R. F. A. Teixeira, F. E. D. Prez, “Chemistry of Crosslinking Processes for Self‐Healing Polymers”, Macromolecular Rapid Communications, 2013, 34, 4, 290-309.
[5]楊景丞, “Hydroxyl Terminated Polyisoprene (HTIP) 陰離子型水性 PU 合成與性質之研究”, 國立中央大學碩士論文, 2002.
[6]M. G. Lu, J. Y. Lee, M J Shim, S. W. Kim,“Synthesis and Properties of Anionic Aqueous Polyurethane Dispersions”, Applied Polymer Science, 2002, 86, 14, 3461-3465.
[7]M. Ionescu, “Chemistry and Technology of Polyols for Polyurethanes”, Rapra Technology Limited, United Kingdom, 2005.
[8]C. H. Tsou, H. T. Lee, H. A. Tsai, H. J. Cheng, M. C. Suen, “Synthesis and Properties of Biodegradlycaprolactone/Polyurethanes by Using 2,6-Pyridinedimethanol as a Chain Extender”, Polymer Degradation and Stability, 2013, 98, 643-650.
[9]C. S. Schollenberger, F. D. Stewart, “Advances in Urethane Science and Technology”, Vol. II. Technomic Published, USA, 1973.
[10]蘇雅卉, “酯系鏈延長劑之合成及其應用於水性聚氨酯織物防水透濕性研究”, 雲林科技大學碩士論文, 2015.
[11]D. K. Chattopadhyay, K. V. S. N. Raju, “Structural Engineering of Polyurethane Coatings for High Performance Applications”, Progess in Polymer Science, 2007, 32, 3, 352-418.
[12]W. Dzierza, “Mechanical Properties of Crosslinked Polyurethanes”, Journal of Applied Polymer Science, 1978, 22, 5, 1331-1342.
[13]J. W. Britain, P. G. Gemeinhardt, “Catalysis of the Isocyanatehydroxyl Reaction”, Journal of Applied Polymer Science, 1960, 4, 11, 207-211.
[14]R. W. Lenz, “Organic Chemistry of Synthetic High Polymers”, Chapter 7, Interscience Published, New York, 1967.
[15]N. Sasaki, T. Yokoyama, T. Tanaka, “Properties of Isocyanurate-Type Crosslinked Polyurethanes”, Journal Polymer Science: Polymer Chemistry, 1973, 11, 8, 1765-1779.
[16]O. Bayer, “Das Di-Isocyanat‐Polyadditionsverfahren (Polyurethane)”, Angewandte Chemie, 1947, 59, 9, 257-272.
[17]O. Bayer, “Polyurethane”, Modern Plastics, 1947, 24, 149.
[18]M. V. Pandya, D. D. Seshande and D. G. Hundiwale, “Thermal Behavior of Cast Polyurethane Elastomers”, Journal of Applied Polymer Science, 1988, 35, 7, 1803-1815.
[19]鍾鎔聲, “熔融紡製聚氨基甲酸酯彈性纖維之研究”, 國立台灣工業技術學院, 纖維及高分子工程技術研究所碩士論文, 1994.
[20]鄭名峰, “熱塑性聚氨基甲酸酯之合成、物性及其在機械零組件上應用之研究”, 國立台灣工業技術學院, 纖維工程技術系碩士論文, 1994.
[21]黃慶忠, “PU彈性體之熱效應”, 化工技術, 1988, 11, 2, 22-24.
[22]瞿金清, 陳煥欽, “高固含量水性聚氨酯分散體的合成”, 化工學報, 2003, 54, 6, 868-871.
[23]S. L. Hsu, H. X. Xiao, H. H. Szmant, K. C. Frisch, “Polyurethane Ionomers. I. Structure Properties Relationships of Polyurethane Ionomers”, Journal of Applied Polymer Science, 1984, 29, 8, 2467-2479.
[24]R. Sandén, N. Wingborg, “Bonding a HTPB Liner to Modern Rocket Case Materials”, Journal of Applied Polymer Science, 1989, 37, 1, 167-171.
[25]蔡宗志, “雙胺鏈延長劑長度對陰離子水性PU的影響”, 國立中央大學, 化學工程與材料工程研究所碩士論文, 2011.
[26]羅華, 莫健華, 張玲玲, “澆注型耐熱聚氨酯樹脂材料的合成及性能”, 高分子材料科學與工程, 2005, 21, 3, 113-116.
[27]M. D. Hager, S. V. D. Zwaag, U. S. Schubert, “Self-Healing Materials”, Advances in Polymer Science 273, Springer Published, USA, 2016.
[28]I. L. Hia, V. Vahedi, P. Pasbakhsh, “Self-Healing Polymer Composites-Prospects Challenges and Applications”, Polymer Reviews, 2016, 0, 0, 1-37.
[29]S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, “Autonomic Healing of Polymer Composites”, Nature, 2001, 409, 794-797.
[30]B. Blaiszik, N. Sottos, S. White, “Nanocapsules for Self-Healing Materials”, Composites Science and Technology, 2008, 68, 3-4, 978-986.
[31]G. O. Wilson, M. M. Caruso, N. T. Reimer, S. R. White, N. R. Sottos, J. S. Moore, “Evaluation of Ruthenium Catalysts for Ring-Opening Metathesis Polymerization-Based Self-Healing Applications”, Chemistry Materials, 2008, 20, 3288-3297.
[32]M. M. Caruso, B. J. Blaiszik, H. Jin, S. R. Schelkopf, D. S. Stradley, N. R. Sottos, S. R. White, J. S. Moore, “Robust, Double-Walled Microcapsules for Self-Healing Polymeric Materials”, ACS Applied Materials & Interfaces, 2010, 2, 1195-1199.
[33]T. S. Coope, U. F. J. Mayer, D. F. Wass, R. S. Trask, I. P. Bond, “Self-Healing of an Epoxy Resin Using Scandium(III) Triflate as a Catalytic Curing Agent”, Advanced Functional Materials, 2011, 21, 24, 4624-4631.
[34]L. Haiyan, W. Rongguo, L. Wenbo, “Preparation and Self-Healing Performance of Epoxy Composites with Microcapsules and Tungsten(VI) Chloride Catalyst”, Journal of Reinforced Plastics and Composites, 2012,31, 13, 924-932.
[35]S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, P. T. Curtis, “A Smart Repair System for Polymer Matrix Composites Composites”, Composites Part A: Applied Science and Manufacturing, 2001, 32, 12, 1767-1776.
[36]R. Trask, I. Bond, “Biomimetic Self-Healing of Advanced Composite Structures Using Hollow Glass Fibers”, Smart Materials and Structures, 2006, 15, 3, 704-710.
[37]C. Dry, “Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibers into Cement Matrices”, Smart Materials and Structures, 1994, 3, 2, 118-123.
[38]C. Dry, “Procedures Developed for Self-Repair of Polymer Matrix Composite Materials”, Composite Structures, 1996, 35, 3, 263-269.
[39]C. Y. Huang, R. Trask, I. Bond, “Characterization and Analysis of Carbon Fiber-Reinforced Polymer Composite Laminates with Embedded Circular Vasculature”, Journal of The Royal Society Interface, 2010, 7, 49, 1229-1241.
[40]J. F. Patrick, N. R. Sottos, S. R. White, “Microvascular Based Self-Healing Polymeric Foam”, Polymer, 2012, 53, 19, 4231-4240.
[41]G. Li, H. E. Meng, “Recent Advances in Smart Self-Healing Polymers and Composites”, Woodhead Published, United Kingdom, 2015.
[42]K. Jud, H. H. Kausch, “Load Transfer through Chain Molecules after Interpenetration at Interfaces”, Polymer Bulletin, 1979, l, 10, 697-707.
[43]C. M. Chung, Y. S. Roh, S. Y. Cho, J. G. Kim, “Crack Healing in Polymeric Materials via Photochemical [2+2] Cycloaddition”, Chemistry Materials, 2004, 16, 3982-3984.
[44]曹振興, “金奈米粒子2f熱塑性樹脂基複合材料光引發自修復效應與機理”, 哈爾濱工業大學, 航天學院複合材料與結構研究所博士論文, 2016.
[45]P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, “Self-Healing and Thermoreversible Rubber from Supramolecular Assembly”, Nature, 2008, 451, 977-980.
[46]R. J. Wojtecki, M. A. Meador, S. J. Rowan, “Using the Dynamic Bond to Access Macroscopically Responsive Structurally Dynamic Polymers”, Nature Materials, 2011, 10, 1, 14-27.
[47]F. García, M. M. J. Smulders, “Dynamic Covalent Polymers”, Journal of Polymer Science, 2016, 54, 22, 3551-3577.
[48]H. Kwart, K. King, “The reverse Diels-Alder or Retrodiene Reaction”, Chemical Reviews, 1968, 68, 4, 415-447.
[49]Y. L. Liu, T. W. Chuo, “Self-healing Polymers Based on Thermally Reversible Diels-Alder Chemistry”, Polymer Bulletin, 2012, 4, 71, 2194-2205.
[50]T. Engel, “Inorganic Building Blocks for the Synthesis of Self-Healing Nanocomposites Based on Diels Alder Reaction”, Universität des Saarlandes, Grades des Doktors der, 2015.
[51]J. M. Craven, “Cross Linked Thermally Reversible Polymers Production from Condensition Polymers with Pendant Furan Groups Crosslinked with Maleimdes”, United States Patent Office, 1969, 25.
[52]M. P. Stevens, A. D. Jenkins, “Crosslinking of Polystyrene via Pendant Maleimide Groups, Journal of Polymer Science : Polymer Chemistry Edition, 1979, 17, 11, 3675-3685.
[53]Y. Chujo, K. Sada, T. Saegusa, “Reversible Gelation of Polyoxazoline by Means of Diels Alder reaction, Macromolecules, 1990, 23, 101, 2636-2641.
[54]X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F. Wudl, “A Thermally Re-Mendable Cross-Linked Polymeric Material”, Science, 2002, 295, 5560, 1968-1702.
[55]W. G. Skene, J. M. P. Lehn, “Dynamers : Polyacylhydrazone Reversible Covalent Polymers, Component Exchange, and Constitutional Diversity”, Proceedings of the National Academy Sciences of the United States of America, 2004, 101, 22, 8270-8275.
[56]J. M. Lehn, “Dynamers : Dynamic Molecular and Supramolecular Polymers”, Progress in Polymer Science, 2005, 30, 8-9, 814-831.
[57]J. M. Lehn, “Dynamers : Dynamic Molecular and Supramolecular Polymers”, Australian Journal of Chemistry, 63, 4, 611-623.
[58]G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, “Covalent Cross-Linked Polymer Gels with Reversible Sol−Gel Transition and Self-Healing Properties”, Macromolecules, 2010, 43, 3, 1191-1194.
[59]G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, “Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol-Gel Transitions”, American Chemical Society Macro Letter, 2012, 1, 2, 275-279.
[60]N. Kuhl , S. Bode , R. K. Bose , J. Vitz , A. Seifert , S. Hoeppener , S. J. Garcia , S. Spange , S. v. d. Zwaag , M. D. Hager , U. S. Schubert, “Acylhydrazones as Reversible Covalent Crosslinkers for Self-Healing Polymers”, Advanced Functional Materials, 2015, 25, 22, 3295-3301.
[61]C. J. Hawker, G. G. Barclay, J. Dao, “Radical Crossover in Nitroxide Mediated Living Free Radical Polymerizations”, Journal of the American Chemical Society, 1996, 118, 46, 11467-11471.
[62]C. Yuan, M. Z. Rong, M. Q. Zhang, Z. P. Zhang, Y. C. Yuan, “Self-Healing of Polymers via Synchronous Covalent Bond Fission/Radical Recombination”, Chemistry of Materials, 2011, 23, 22, 5076-5081.
[63]F. Wang, M. Z. Rong, M. Q. Zhang, “Reversibility of Solid State Radical Reactions in Thermally Remendable Polymers with C-ON Bonds”, Journal of Materials Chemistry, 2012, 22, 26, 13076-13084.
[64]C. Yuan, M. Z. Rong, M. Q. Zhang, “Self-Healing Polyurethane Elastomer with Thermally Reversible Alkoxyamines as Crosslinkages”, Polymer, 2014, 55, 7, 1782-1791.
[65]S. Telitel, Y. Amamoto, J. Poly, F. Morlet-Savary, O. Soppera, J. Lalevee, K. Matyjaszewski, “Introduction of Self-Healing Properties into Covalent Polymer Networks via the Photodissociation of Alkoxyamine Junctions”, Polymer Chemistry, 2014, 5, 3, 921-930.
[66]張雲飛, 鄧國華, “基於動態共價鍵的可自癒合聚合物凝膠”, 化工進展雜誌, 2012, 31, 10, 2239-2244.
[67]J. Canadell, H. Goossens, B. Klumperman, “Self-Healing Materials Based on Disulfide Links”, Macromolecules, 2011, 44, 8, 2536-2541.
[68]M. Pepels, I. Filot, B. Klumperman, H. Goossens, “Self-Healing Systems Based on Disulfide–Thiol Exchange Reactions”, Polymer Chemistry, 2013, 4, 18, 4955-4965.
[69]A. P. Bapat, J. G. Ray, D. A. Savin, B. S. Sumerlin, “Redox-Responsive Dynamic-Covalent Assemblies: Stars and Miktoarm Stars”, Macromolecules, 2013, 46, 6, 2188-2198.
[70]B. D. Fairbanks, S. P. Singh, C. N. Bowman, K. S. Anseth, “Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction”, Macromolecules, 2011, 44, 2444-2450.
[71]N. V. Tsarevsky, K. Matyjaszewski, “Reversible Redox Cleavage / Coupling of Polystyrene with Disulfide or Thiol Groups Prepared by Atom Transfer Radical Polymerization”, Macromolecules, 2002, 35, 24, 9009-9014.
[72]H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara, “A Dynamic Covalent Polymer Driven by Disulfide Metathesis under Photoirradiation”, Chemical Communications, 2010, 46, 7, 1150-1152.
[73]Y. Xu, D. Chen, “A Novel Self-Healing Polyurethane Based on Disulfide Bonds, Macromolecular Chemistry and Physics”, Macromolecular Chemistry and Physics, 2016, 217, 10, 1191-1196.
[74]U. Lafont, H. v. Zeijl, S v. d. Zwaag, “Influence of Cross-Linkers on the Cohesive and Adhesive Self-Healing Ability of Polysulfide-Based Thermosets”, Applied Materials & Interfaces, 2012, 4, 11, 6280-6288.
[75]T. Wan, D. Chen, “Synthesis and Properties of Self-Healing Waterborne Polyurethanes Containing Disulfide Bonds in the Main Chain”, Materials Science, 2017, 52, 1, 197-207.
[76]L. Zhang, L. Chen, S. J. Rowan, “Trapping Dynamic Disulfide Bonds in the Hard Segments of Thermoplastic Polyurethane Elastomers”, Macromolecular Chemistry and Physics, 2017, 218, 1, 1600320.
[77]L. Ling, J. Li, G. Zhang, R. Sun, C. P. Wong, “Self-Healing and Shape Memory Linear Polyurethane Based on Disulfide Linkages with Excellent Mechanical Property”, Macromolecular Research, 2018, 26, 4, 365-373.
[78]J. Y. Kim, S. Y. Jeong, G. J. Shin, S. K. Lee, K. H. Choi, “Near Infrared Cut-Off Characteristics of Various Perovskite-Based Composite Films”, Applied Mechanics and Materials, 2012, 229-231, 2733-2736.
[79]A. Hussin”, R. Gruehn’, C.H. Ritscher, “Crystal Growth of Alkali Metal Tungsten Brozes MxWO3 (M = K, Rb, Cs), and their Optical Properties”, Alloys and Compounds, 1997, 246, 1-2, 51-61.
[80]H. Takeda, K. Adachi, “Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions”, Journal of the American Ceramic Society, 2007, 90, 12, 4059-4061.
[81]C. J. Chen , D. H. Chen, “Preparation and Near-Infrared Photothermal Conversion Property of Cesium Tungsten Oxide Nanoparticles”, Nanoscale Research Letters, 2013, 8, 1, 57-64.
[82]楊修銘, “以丙烯酸酯寡聚體製備陽離子型紫外光硬化塗料之研究”, 國立高雄應用科技大學, 化學工程與材料工程系碩士論文, 2016.
[83]江治, 袁開軍, 李疏芬, 周允基, “聚氨酯的FTIR光譜與熱分析研究”, 光譜學與光譜分析, 2006, 26, 4, 624-628.
[84]B. Herna´ndez, F. Pflüger, E. López‐Tobar, S. G. Kruglik, J. V. Garcia‐Ramos, S. Sanchez‐Cortes, M. Ghomi, “Disulfide Linkage Raman Markers : a Reconsideration Attempt”, Journal Raman Spectroscopy, 2014, 45, 8, 657-664.
[85]J. Baghdachi, “Polymer Systems and Film Formation Mechanisms in High Solids, Powder, and UV Cure Systems”, www.swst. org/meetings/AM04/Baghdachi.pdf (accessed Nov 18, 2007).
[86]F. Yuan, W. Jiao, Y. Hong, W. Liu, R. Wang, “Synthesis and Performance Research of Polyester Polyurethane Elastomers”, Material Sciences, 2016, 6, 2, 103-109.
[87]辛國維, “導電性聚胺基甲酸酯及其有機/無機奈米混成材料之合成及性質探討”, 國立高雄應用科技大學, 化學工程與材料工程系碩士論文, 2004.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top