(54.236.58.220) 您好!臺灣時間:2021/03/08 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林凱鵬
研究生(外文):LIN, KAI-PENG
論文名稱:穿透式電子顯微鏡即時動態壓縮與壓痕技術分析微柱之機械特性
論文名稱(外文):Mechanical Properties of Micropillars Using In Situ Transmission Electron Microscope Compression And Indentation
指導教授:方得華方得華引用關係
指導教授(外文):FANG, TE-HUA
口試委員:陳鐵城湯譯增郭振坤林恆勝陳道星林明宏方得華
口試委員(外文):CHEN,TEI-CHENTANG,I-TSENGKUO, JENN-KUNLIN, HENG-SHENGCHEN, TAO-HSINGLIN, MING-HORNGFANG, TE-HUA
口試日期:2018-01-15
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:136
中文關鍵詞:穿透式電子顯微鏡即時動態壓縮奈米壓痕楊氏模數差排環分子動力模擬缺陷
外文關鍵詞:In situ transmission electron microscopy compressionNanoindentationYoung's modulusDislocation loopMolecular dynamics simulationDefect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以穿透式電子顯微鏡即時動態壓縮與壓痕技術分析微柱之機械性質。從研究結果得知,在即時動態壓縮過程中可以發現材料應力波傳遞與結構變化;在壓縮後,因內部結構產生缺陷與破壞而使材料產生彎曲與斷裂。氯化鈉、氧化鋁、鎳鋁和鎳鈦合金奈米柱經動態壓縮試驗得知楊氏模數分別為: 10.4-23.9 GPa、25.5-347.5 GPa、32.7-44.9 GPa、5.9-24.4 GPa。氯化鈉、氧化鋁、銅、鎳鋁和鎳鈦合金經奈米壓痕試驗得知維氏硬度值分別為: 196-260 MPa、14.0-20.2 GPa、1.1-1.2 GPa、2.9-4.5 GPa和7.4-7.7GPa。研究中發現氧化鋁在維克氏硬度測試後,材料內部結構透過高解析穿透式電子顯微鏡觀察出有位錯和差排環的現象產生。本文也使用分子動力學探討銅柱狀結構受壓縮後之力學特性與材料變形機制。研究結果可以看出,銅柱在壓縮過程中會有差排和應力波傳遞的現象,且銅柱的外徑會隨著壓縮的位移增加而增加。最後,透過理論探討與模擬分析,材料微柱的機械特性應建立重要性能與結構相關連的機制與理論。
In this study, the mechanical properties of micropillars were analyzed by in situ transmission electron microscopy compression and indentation. The results show that the stress wave propagation and structural variations of the material can be found during in situ compression. After compression process, because of the internal structure of the material defects and damage, the micropillar will be bended and broken. The Young's modulus of NaCl, Al2O3, NiAl and NiTi alloy micropillaby in situ compression test were 10.4-23.9 GPa, 25.5-347.5 GPa, 32.7-44.9 GPa and 5.9-24.4 GPa, respectively. Vickers hardness values of NaCl, Al2O3, Cu, NiAl and NiTi alloy were found to be 196-260 MPa, 14.0-20.2 GPa, 1.1-1.2 GPa, 2.9-4.5 GPa and 7.4-7.7GPa, respectively. In the study, it was found that the phenomenon of dislocation and dislocation loop appeared in the internal structure of the Al2O3 by high-resolution transmission electron microscopy after the Vickers hardness test. The mechanical behavior and deformation mechanism of Cu micropillar structures through molecular dynamics simulation after compressed were also investigated in this study. As can be seen from the research results, Cu pillars have dislocation and stress wave transmission phenomenon during the compression process, and the diameter of the Cu pillar has increased with the increase of the compression displacement. Finally, through theoretical exploration and simulation analysis, the mechanical properties of micropillar should establish the important properties and the mechanism of structures and theory.
摘要 i
Abstract ii
Acknowledgements iv
Contents v
List of table captions ix
List of figure captions x
Symbol table xiv
Chapter 1 Introduction 1
1.1 Microstructure materials 1
1.1.1 Mechanical properties of microstructure materials 1
1.2 Nanostructure materials 3
1.2.1 Mechanical properties of nanostructure materials 4
1.3 Motivation 5
1.4 Thesis organization 5
Chapter 2 Literature review 7
2.1 Literature review of in situ transmission electron microscope compression 7
2.2 Literature review of sodium chloride materials 9
2.3 Literature review of alumina materials 10
2.4 Literature review of single crystal copper materials 11
2.5 Literature review of nickel - aluminum alloy 12
2.6 Literature review of nickel - titanium alloy 13
Chapter 3 Experimental and molecular dynamics simulation method 14
3.1 Experimental architecture 14
3.1.1 . Preparation of the materials 15
3.1.2 . Cutting of pillar structures 15
3.1.3 Experimental procedures 15
3.2 Mechanical analysis of materials 20
3.3 Molecular dynamics simulation 24
3.4 Measurements devices 26
3.4.1 Vacuum arc melting furnace 26
3.4.2 Grinding and polishing machine 27
3.4.3 Atomic force microscope (AFM) 28
3.4.4 Double beam type focusing ion beam instrument (DB-FIB) 29
3.4.5 In situ nano indentation testing machine 30
3.4.6 Transmission electron microscope (TEM) 31
3.4.7 Raman 32
3.4.8 Nanoindentation 33
3.4.9 Vicker hardness 36
Chapter 4 NaCl substrate and pillar structures 38
4.1 Results and discussion 38
4.1.1 Surface morphology and local contact behavior 38
4.1.2 Mechanical properties and dynamic deformation 40
4.1.3 Nanoindentation 44
4.1.4 Vickers micro-hardness test 45
Chapter 5 Alumina (Al2O3) substrate and pillar structures 48
5.1 Results and discussion 48
5.1.1 Dynamic deformation of Al2O3 nanopillars during in situ TEM compression 48
5.1.2 Stress-displacement curves of Al2O3 nanopillars during in-situ TEM compression 53
5.1.3 Nanoindentation 54
5.1.4 Vickers micro-hardness test 56
5.1.5 Raman spectrum 57
5.1.6 FIB micrographs after the Vickers hardness measurement 58
5.1.7 HR-TEM micrographs after Vickers hardness 59
Chapter 6 Single-crystal Cu substrate and pillars structures 61
6.1 Results and discussion 61
6.1.1 Compression process and mechanical properties during molecular dynamics simulation 61
6.1.2 Dynamic deformation of single-crystal Cu pillars during in situ TEM compression 65
6.1.3 Stress-strain curves of single-crystal Cu nanopillars during in situ TEM compression 69
6.1.4 Nanoindentation 69
6.1.5 Vickers micro-hardness test 70
6.1.6 Comparison of the dynamic process and mechanical properties of single-crystal Cu nanopillars using experimental and simulation results 72



Chapter 7 NiAl alloys substrate and pillar structures 74
7.1 Results and discussion 74
7.1.1 Phase diagram and X-ray diffraction 74
7.1.2 Dynamic deformation of Ni30Al70 pillars utilizing in situ TEM compression test 76
7.1.3 Stress–strain curves of Ni30Al70 pillars 86
7.1.4 Nanoindentation 88
7.1.5 Vickers micro-hardness test 89
Chapter 8 NiTi alloys substrate and pillar structures 91
8.1 Results and discussion 91
8.1.1 Scanning electron microscope and X-ray diffraction 91
8.1.2 Dynamic deformation of NiTi pillars utilizing in situ TEM compression test 94
8.1.3 Load-displacement curves of NiTi nanopillars during in situ TEM compression 97
8.1.4 Stress-Strain curves of NiTi alloy nanopillars during in situ TEM compression 97
8.1.5 Nanoindentation test 100
8.1.6 Raman spectrum of NiTi alloy substrate 102
8.1.7 Vickers micro-hardness test 102
Chapter 9 Conclusions 105
References 108
Curriculum vitae 118
Publication list 118

[1] F. George, V. Vander, 1985, "Metallography and Microstructures," ASM Handbook, Vol. 9, 12.
[2] S. H. R. Sanei, R. S. Fertig III, 2015, “Uncorrelated volume element for stochastic modeling of microstructures based on local fiber volume fraction variation,” Compos. Sci. Technol., Vol. 117, 191-198.
[3] S. H. R. Sanei, E. J Barsotti, D. Leonhardt and R. S Fertig III, 2016, “Characterization, synthetic generation, and statistical equivalence of composite microstructures,” J. Comp. Mater., Vol. 51, 1817-1829.
[4] T. Ye, L. Li, P. Guo, G. Xiao, Z. Chen, 2016, “Effect of aging treatment on the microstructure and flow behavior of 6063 aluminum alloy compressed over a wide range of strain rate,” Int. J. Impact Eng., Vol. 90, 72–80.
[5] S. M. Bayazid, H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, A. Mirhaji, 2016, “Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy,” Mater. Sci. Eng.: A, Vol. 649, 293–300.
[6] J. Bočana, S. Tsurekawab, A. Jägera, 2017, “Fabrication and in situ compression testing of Mg micropillars with a nontrivial cross section: Influence of micropillar geometry on mechanical properties,” Mater. Sci. Eng.: A, Vol. 687, 337–342.
[7] E. Ghasali, A. Pakseresht, A. Rahbari, H. Eslami-shahed, M. Alizadeh, T. Ebadzadeh, 2016, “Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al-SiC-TiC composites,” J. Alloy Compd. Vol. 666, 366-371.
[8] Y. Xiao, J. Wehrs, H. Ma, T. Al-Samman, S. Korte-Kerzel, M. Gökend, J. Michler, R. Spolenak, J. M. Wheeler, 2017, “Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions,” Scripta Mater., Vol. 127, 191–194.
[9] B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, 2016, “Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression,” J. Mater. Eng. Perform., Vol. 25, 2985-2992.
[10] J. T. Kim, S. W. Lee, S. H. Hong, H. J. Park, J. Y. Park, N. Lee, Y. Seo, W. M. Wang, J. Ma. Parkd, K. B. Kim, 2016, “Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites,” Mater. Design, Vol. 92, 1038–1045.
[11] E. Guo, S. S. Singh, C. S. Kaira, X. Meng, Y. Xu, L. Luo, M. Wang, N. Chawla, 2017, “Mechanical properties of microconstituents in Nb-Si-Ti alloy by micropillar compression and nanoindentation,” Mater. Sci. Eng.: A, Vol. 687, 99–106.
[12] H. Gleiter, 2000, “Nanostructured materials: basic concepts and microstructure,” Acta Mater., Vol. 48, 1-29.
[13] A. Henglein, 1989, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chem. Rev., Vol. 89, 1861–1873.
[14] Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, 2010, “Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption”, Nano Let., Vol. 10, 3823–3827.

[15] J. T. Kwon, H. G. Shin, Y. H. Seo, B. H. Kim, H. G. Lee, J. S. Lee, 2009, “Simple fabrication method of hierarchical nano-pillars using aluminum anodizing processes,” Curr. Appl. Phys., Vol. 9, 81–85.
[16] P. Patel, 2010, “Nanopillars that Trap More Light of the next generation of technology,” MIT Technol. Rev..
[17] H. Hahn, K.A. Padmanabhan, 1995, “Mechanical response of nanostructured materials,” Nanostruct. Mater., Vol. 6, 191-200.
[18] H. Hahn, K.A. Padmanabhan, 1995, “Deformation behavior and possible applications of nanostructured materials,” Adv. Mat. Res., Vol. 3, 2119-2120.
[19] K.A. Padmanabhan, H. Hahn, 1996, “Snthesis and Processing of Nanocrystalline Powder,” The Minerals, Metals and Materials Society, Warrendale, USA, 21.
[20] K.A. Padmanabhan, 2001, “Mechanical properties of nanostructured materials,” Mater. Sci. Eng.: A, Vol. 304–306, 200–205.
[21] H. Yin, Y. He, Z. Moumni, Q. Sun, 2016, “Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy,” Int. J. Fatigue, Vol. 88, 166–177.
[22] K. A. Darling, M. A. Tschopp, R. K. Guduru, W. H. Yin, Q. Wei, L. J. Kecskes, 2014, “Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion,” Acta Mater., Vol. 76, 168–185.
[23] L. Zhu, H. Ruan, A. Chen, X. Guo, J. Lu, 2017, “Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels,” Acta Mater., Vol. 128, 375-390.
[24] G. M. Cheng, T. H. Chang, Q. Qin, H. Huang, and Y. Zhu, 2014, “Mechanical Properties of Silicon Carbide Nanowires: Effect of Size- Dependent Defect Density,” Nano Lett., Vol. 14, 754–758.
[25] F. Banhart, 2008, ” In-Situ Electron Microscopy at High Resolution,” Singapore: World Scientific, ISBN 978-9812797339.
[26] D. Kiener and A. M. Minor, 2011, “Source-controlled yield and hardening of Cu(1 0 0) studied by in situ transmission electron microscopy,” Acta Mater., Vol. 59, 1328-1337.
[27] M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, 2012, “Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy,” Adv. Mater.,Vol. 24, 6034-6041.
[28] M. A. Haque and M. T. A. Saif, 2004, “Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study,” P. Natl. Acad. Sci. USA, Vol. 101, 6335–6340.
[29] Y. C. Hsieh, L. Zhang, T. F. Chung, Y. T. Tsai, J. R. Yang, T. Ohmur, T. Suzuki, 2016, “In-situ transmission electron microscopy investigation of the deformation behavior of spinodal nanostructured δ-ferrite in a duplex stainless steel,” Scripta Mater., Vol. 125, 44-48.
[30] Y. Kabiri, N. Schrenker, J. Müller, M. Mačković, E. Spiecker, 2017, “Direct observation of dislocation formation and plastic anisotropy in Nb2AlC MAX phase using in situ nanomechanics in transmission electron microscopy,” Scripta Mater., Vol. 137, 104-108.
[31] T. H. Fang, Y. J. Hsiao, S. H. Kang, 2015, “Mechanical characteristics of copper indium gallium diselenide compound nanopillars using in situ transmission electron microscopy compression,” Scripta Mater., Vol. 108, 130-135.

[32] S. H. Kang, T. H. Fang, 2014, “Size effect on compression properties of GaN nanocones examined using in situ transmission electron microscopy,” J. Alloy. Compd., Vol. 597, 72-78.
[33] S. H. Kang, T. H. Fang, T. H. Chen, C. H. Kuo, 2013, “Size effect on nanomechanical properties of ZnO cones using in situ transmission electron microscopy,” Curr. Appl. Phys., Vol. 13, 1689-1696.
[34] L. G. Liu and W. A. Bassett, 1973, “Compression of Ag and phase transformation of NaCl,” J. Appl. Phys., Vol. 44, 1475-1479.
[35] J. Fraxedas, S. Garcia-Manyes, P. Gorostiza, and F. Sanz, 2002, “Nanoindentation: Toward the sensing of atomic interactions,” P. Natl. Acad. Sci. USA, Vol. 99, 5228-5232.
[36] K. S. Singh and R. S. Chanhan, 2002, “Analysis of thermodynamic and thermoelastic properties of ionic solids at high temperatures,” Physica B: Condensed Matter., Vol. 315, 74-81.
[37] N. Sata, G. Shen, M. L. Rivers, and S. R. Sutton, 2002, “Pressure-volume equation of state of the high-pressure B2 phase of NaCl,” Phys. Rev. B, Vol. 65, 104114.
[38] X. Li and R. Jeanloz, 1987, “Measurement of the B1-B2 transition pressure in NaCl at high temperatures,” Phys. Rev. B, Vol. 36, 474-479.
[39] S. S. Yosiko, 1983, “Phase transitions and equations of state for the sodium halides: NaF NaCl, NaBr, and NaI,” J. geophys. Res.: solid earth, Vol. 88, 3543-3548.
[40] S. Ono, J. P. Brodholt, D. Alfe, M. Alfredsson, and G. D. Price, 2008, “Ab initio molecular dynamics simulations for thermal equation of state of B2B2-type NaCl,” J. Appl. Phys., Vol. 103, 023510.
[41] G. Binnig, C. F. Quate, and C. Gerber, 1986, “Atomic Force Microscope,” Phys. Rev. Lett., Vol. 56, 930-933.
[42] A. Folch, P. Gorostiza, J. Servat, J. Tejada, and F. Sanz, 1997, “Enhanced surface atomic step motion observed in real time after nanoindentation of NaCl(100) ,” Surf. Sci., Vol. 380, 427-433.
[43] C. L. Wang, R. Z. Xu, L. M. Tang and J. Biomed. 2013, “The Local Heating Effect by Magnetic Nanoparticles Aggregate on Support Lipid Bilayers,” J. Biomed. Nanotechnol., Vol. 9, 1210-1215.
[44] H. Tang, X. Bouju, C. Joachim, C. Girard, and J. Devillers, 1998, “Theoretical study of the atomic-force-microscopy imaging process on the NaCl(001) surface,” J. Chem. Phys., Vol. 108, 359-367.
[45] Z. H. He, C. X. Qian, 2014, “Nanoindentation Characteristics of Cement with Metakaolin Under Different Curing Systems,” Nanosci. Nanotech. Let., Vol. 6, 721-725.
[46] S. H. Wang, Y. J. Hsiao, T. H. Fang, S. L. Chen, and S. H. Kang, 2015, “P3HT:PCBM Doped with Multi-Walled Carbon Nanotubes for Enhancing Efficiency and Nanomechanical Properties of Hybrid Photovoltaics,” Sci. Adv. Mater., Vol. 7, 278-282.
[47] D. K. Devarajan, K. Sivakumar, and J. Ramasamy, 2014, “Microstructure characteristics of copper single layer and copper/titanium multilayer coatings: Nanomechanical properties and bactericidal activities,” Mater Express., Vol. 4, 453-464.
[48] Z. H. Hong, T. H. Fang, and S. F. H. Wang, 2012, “Interface and Nanoscale Mechanical Behavior of Zinc Oxide During Nanoindentation by Molecular Dynamics Simulation,” Nanosci. Nanotech. Lett., Vol. 4, 13-19.
[49] T. H. Fang, T. H. Wang, and J. H. Wu, 2010, “Mechanical Properties of Multilayered Films Using Different Nanoindenters,” J. Nanosci. Nanotech., Vol. 10, 4568-4572.
[50] H. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, D. E. Niesz, 2004, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci., Vol. 236, 120-130.
[51] S. Graça, V.Trabadelo, A. Neels, J. Kuebler, V. Le Nader, G. Gamez, M. Döbeli, K.Wasmer, 2014, “Influence of mosaicity on the fracture behavior of sapphire,” Acta Mater., Vol. 67, 67-80.
[52] R Sabia, V A Greenhut and C G Pantano, 1999, “Finishing of Advanced Ceramics and Glasses,” Indianapolis: American Ceramic Society, 102.
[53] E. R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, 2009, “Sapphire: Material, Manufacturing, Applications,” (New York: Springer).
[54] W. G. Mao, Y. G. Shen, C. Lu, 2011, “Nanoscale elastic-plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation,” J. Eur. Ceram. Soc., Vol. 31, 1865-1871.
[55] A. H. Heuer, C. L. Jia, K. P. D. Lagerlöf, 2010, “The core structure of basal dislocations in deformed sapphire (α-Al2O3) ,” Science, Vol. 330, 1227-1231.
[56] J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, 2010, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire,” Opt. Express, Vol. 18, 8300-8310.
[57] T. Kudrius, G. Šlekys and S. Juodkazis, 2010, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys., Vol. 43, 145501.
[58] Z. Zhang, R. W. Hicks, T. R. Pauly, and T.J. Pinnavaia, 2002, “Mesostructured forms of γ-Al2O3,” J. Am. Chem. Soc., Vol. 124, 1592-1593.
[59] H. C. Lee, H. J. Kim, S. H. Chung, K. H. Lee, H. C. Lee, and J. S. Lee, 2003, “Synthesis of unidirectional alumina nanostructures without added organic solvents,” J. Am. Chem. Soc., Vol. 125, 2882-2883.
[60] M. Nakagawa, I. Yamamoto, N. Yamashita, 1998, “Detection of organic molecules dissolved in water using a γ-Al2O3 chemiluminescence-based sensor,” Anal. Sci., Vol. 14, 209-214.
[61] G. H. Liu, Y. F. Zhu, X. R. Zhang, and B. Q Xu, 2002, “Chemiluminescence determination of chlorinated volatile organic compounds by conversion on nanometer TiO2,” Anal. Chem., Vol. 74, 6279-6284.
[62] H. Chen, F, Tian, J. Chi, H. Du, 2014, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE, Vol. 9098, 90980.
[63] B. Liu, Z. Yu, Z. Tian, D. Homa, C. Hill, A. Wang, and G. Pickrell, 2015, “Temperature dependence of sapphire fiber Raman scattering,” Opt. Lett., Vol. 40, 2041-2044.
[64] N. F. Wu, H. J. Chen, Y. L. Chueh, S. J. Lin, L. J. Chou and W. K. Hsu, 2005, “Doping spiral alumina nanowires,” Chem. Commun., Vol. 2, 204-206.
[65] C. C. Tang, S. S. Fan, P. Li, M. Lamy de la Chapelle, H. Y. Dang, 2001, “In situ catalytic growth of Al2O3 and Si nanowires,” J. Cryst. Growth, Vol. 224, 117-121.
[66] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, C. H. Ye and L. D. Zhang, 2004, “Alumina nanowire arrays standing on aporous anodic alumina membrane,” Nanotechnology, Vol. 15, 189-191.

[67] Y. B. Li, Y. Bando, D. Golberg, 2005, “Single-crystalline α-Al2O3 nanotubes converted from Al4O4C nanowires,” Adv. Mater., Vol. 17, 1401-1405.
[68] J. Zhou, S. Z Deng, J. Chen, J. C She, N. S Xu, 2002, “Synthesis of crystalline alumina nanowires and nanotrees,” Chem. Phys. Lett., Vol. 365, 505-528.
[69] X. S. Fang, C. H. Ye, L. D. Zhang, T. Xie, 2005, “Twinning mediated growth of Al2O3 nanobelts and their enhanced dielectric responses,” Adv. Mater., Vol. 17, 1661-1665.
[70] R. Heid, D. Strauch, and K. P. Bohnen, 2000, “Ab initio lattice dynamics of sapphire,” Phys. Rev. B, Vol. 61, 8625.
[71] A. Krell, S. Schädlich, 2001, “Depth sensing hardness in sapphire and in sintered sub-μm alumina,” Int. J. Refract. Met. Hard Mater, Vol. 19, 237-243.
[72] W. J. Chang, T. H. Fang, 2003, “Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation,” J. Phys. Chem. Solids, Vol. 64, 1279-1283.
[73]Y. C. Fan, T. H. Fang, K. M. Lin and R. Z. Qiu, 2017, “Nanoindentation and Deformation of Multilayered Au/Cu Films,” Smart Sci., Vol. 5, 1-13.
[74] M. A. Tschopp and D. L. McDowell, 2008, “Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading,” J. Mech. Phys. Solids, Vol. 56, 1806-1830.
[75] Z. Yang, Q. Yang, G. Zhang, 2017, “Poisson's ratio and Young's modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular dynamics,” Phys. Lett. A, Vol. 381, 280-283.
[76] W. N. Li, J. M. Xue, J. X. Wang and H. L. Duan, 2014, “Mechanical properties of self-irradiated single-crystal copper,” Chin. Phys., Vol. 23, 036101.
[77] S. Suresh, 2001, “Graded Materials for Resistance to Contact Deformation and Damage,” Science, Vol. 292, 2447-2451.
[78] T. H. Fang, W. J. Chang, 2003, “Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique,” Microelectron. Eng., Vol. 65, 231-238.
[79] T. Y. Zhang, L. Q. Chen, and R. Fu, 1999, “Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture,” Acta Mater., Vol. 47, 3869-3878.
[80] W. W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson, 1998, “Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations,” J. Mater. Res., Vol. 13, 421-439.
[81] W. C. Oliver and G. M. Pharr, 1992, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., Vol. 7, 1564-1583.
[82] A. Gouldstone, K. J. Van Vlit, and S. Suresh, 2001, “Nanoindentation: Simulation of defect nucleation in a crystal,” Nature, Vol. 411, 656.
[83] T. Y. Zhang and W. H. Xu, 2002, “Surface effects on nanoindentation,” J. Mater. Res., Vol. 17, 1715-1720.
[84] D. Kiener, P. J. Guruprasad, S. M. Keralavarma, G. Dehm, and A. A. Benzerga, 2011, “Work hardening in micropillar compression: In situ experiments and modeling,” Acta Mater., Vol. 59, 3825-3840.

[85] C. C. Huang, T. C. Chiang, T. H. Fang, 2015, “Grain size effect on indentation of nanocrystalline copper,” Appl. Surf. Sci., Vol. 353, 494-498.
[86] M. J. Mayo, 1991, “The Mechanical Behavior of a Grain Boundary-Rich (Nanocrystalline) Metal,” Mater. Res. Soc., Vol. 229, 197-206.
[87] P. G. Sanders, J. A. Eastman, and J. R. Weertman, 1997, “Elastic and tensile behavior of nanocrystalline copper and palladium,” Acta Mater., Vol. 45, 4019-4025.
[88] H. Tang, X. Bouju, C. Joachim, C. Girard, and J. Devillers, 1998, “Theoretical study of the atomic-force-microscopy imaging process on the NaCl (001) surface,” J. Chem. Phys., Vol. 108, 359-367.
[89] Z. H. He; C. X. Qian, 2014, “Nanoindentation Characteristics of Cement with Metakaolin Under Different Curing Systems,” Nanosci. Nanotechnol. Lett., Vol. 6, 721-725.
[90] D. K. Devarajan, K. Sivakumar, J. Ramasamy, 2014, “Microstructure characteristics of copper single layer and copper/titanium multilayer coatings: Nanomechanical properties and bactericidal activities,” Mater. Express, Vol. 4, 453-462.
[91] M. Swain, S. Singh, S. Basu, D. Bhattacharya, and Mukul Gupta, 2014, “Identification of a kinetic length scale which dictates alloy phase composition in Ni-Al interfaces on annealing at low temperatures,” J. Appl. Phys., Vol. 116, 222208.
[92] C. D Wu, P. H. Sung, T. H. Fang, 2013, “Study of deformation and shape recovery of NiTi nanowires under torsion,” J. Mol. Model., Vol. 19, 1883-1890.
[93] C. D. Wu, T. H. Fang, C. Y. Chen, C. I Weng, 2014, “Effect of nanograin size on nanoformed NiTi alloys,” Appl. Surf. Sci., Vol. 292, 500-505.
[94] L. Xiong, L. Bai, and J. Liu, 2014, “Strength and equation of state of NaCl from radial x-ray diffraction,” J. Appl. Phys., Vol. 115, 033509.
[95] V. Karthik, S. Ghosh S. K. Pabi, 2013, “Effects of bulk stoichiometry and surface state of NiAl nano-dispersoid on the stability and heat transfer characteristics of water based nanofluid,” Exp. Therm. Fluid Sci., Vol. 48, 156-162.
[96] R. Seymour, A. Hemeryck, K. Nomura, W. Wang, R. K. Kalia, A. Nakano and P.Vashishta, 2014, “Nanoindentation of NiAl and Ni3Al crystals on (100), (110), and (111) surfaces: A molecular dynamics study,” Appl. Phys. Lett., Vol. 104, 141904.
[97] E. Vitali, C. T. Wei, D. J. Benson, M. A. Meyers, 2011, “Effects of geometry and intermetallic bonding on the mechanical response, spalling and fragmentation of Ni–Al laminates,” Acta Mater., Vol. 59, 5869-5880.
[98] S. K. Pabi, J. Joardar, I. Manna, and B. S. Murty, 1997, “Nanocrystalline phases in Cu-Ni, Cu-Zn and Ni-Al systems by mechanical alloying”, Nanostruct. Mater., Vol. 9, 149-152.
[99]Y. F. Chen, P. H. Sung, C. D. Wu, T. H. Fang, 2012, “Studies of nanomechanical properties and fatigue strength of annealed Ni–Ti shape memory alloy,” Mater. Lett., Vol. 71, 84–87.
[100] C. Boller In: Friswell M, editor. 2007, “Adaptive aerospace structures with smart technologies— a retrospective and future view adaptive structure: engineering applications,” New York: Wiley; 163–90.
[101] F. EI Feninat, G. Laroche, M. Fiset, D. Mantovani, 2002, “Shape memory materials for biomedical applications,” Adv. Eng. Mater., Vol. 4, 91–104.


[102] S. A. Shabalovskaya. 1996, “On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys,” Bio. Med. Mater. Eng., Vol. 6, 267–289.
[103] K. R. Dai, Y. Y. Chu, 1996, “Studies and applications of NiTi shape memory alloys in the medical field in China,” Bio. Med. Mater. Eng., Vol. 6, 233–240.
[104] N. B. Morgan, 2004, “Medical shape memory alloy applications – the market and its products,” Mater. Sci. Eng.: A, Vol. 378, 16–23.
[105] L. Petrini, F. Migliavacca, P. Massarotti, 2005, “Computational studies of shape memory alloy behaviour in biomedical applications,” J. Biomech. Eng., Vol. 127, 716–725.
[106] W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, 1998, “Thin-film shape-memory alloy actuated micropumps ,” J. Microelectromech. Syst., Vol. 7, 245–251.
[107] E. Makino, T. Mitsuya, T. Shibata, 2001, “Fabrication of TiNi Shape Memory Micropump,” Sens. Actuators. A, Vol. 88, 256–262.
[108] C. P. Frick, B. G. Clark, A. S. Schneider, R. Maaß, S. V. Petegem and H. V. Swygenhoven, 2010, “On the plasticity of small-scale nickel–titanium shape memory alloys,” Scripta Mater., Vol. 62, 492–495.
[109] Y. Zhong, K. Gall, T. Zhu, 2012, “Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars,” Acta Mater., Vol. 60, 6301–6311.
[110] X. Huang, J. Nohava, B. Zhang and A.G. Ramirez, 2011, “Nanoindentation of NiTi shape memory thin films at elevated temperatures,” Int. J. Smart and Nano Mater., Vol. 2, 39-49.
[111] T. Duerig, A. Pelton, D. Sto¨ckel, 1999, “An overview of nitinol medical applications,” Mater. Sci. Eng. A, Vol. 149, 273–275.
[112] S. Miyazaki, T. W. Duerig, K. N. Melton, D. Sto¨ckel, Wayman CM, editors. 1990, “Engineering aspects of shape memory alloys,” London: Butterworth-Heinemann.
[113] T. Simon, A. Kroger, C. Somsen, A. Dlouhy, G. Eggeler, 2010, “On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys,” Acta Mater., Vol. 58, 1850-1860.
[114] J. Ye, R. K. Mishra, A. R. Pelton, A. M. Minor, 2010, “Direct observation of the NiTi martensitic phase transformation in nanoscale volumes,” Acta Mater., Vol. 58, 490–498.
[115] C. P. Frick, S. Orso, E. Arzt, 2007, “Loss of pseudoelasticity in nickel-titanium sub-micron compression pillars,” Acta Mater., Vol. 55, 3845-3855.
[116] M. D. Uchic, D. M. Dimiduk, J. N. Florando, W. D. Nix, 2004, “Sample dimensions’ influence strength and crystal plasticity,” Science, Vol. 305 , 986-989.
[117] D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, 2006, “Scale-Free Intermittent Flow in Crystal Plasticity,” Science, Vol. 312, 1188-1190.
[118] A.R. Rahai, S. Kazemi, 2008, “Buckling analysis of non-prismatic columns based on modified vibration modes,” Commun. Nonlinear Sci. Numer. Simul., Vol. 13, 1721-1735.
[119] H. W. Haslach, R. W. Armstrong Jr., 2004, “Deformable Bodies and Their Material Behavior,” J. Wiley & Sons, pp. 496.
[120] H. Kang, Y. Zhang, Mo Yang, 2011, “Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions,” Appl. Phys. A, Vol. 103, 1001-1008.
[121] M. S. Daw and M. I. Baskes, 1984, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B, Vol. 29, 6443-6453.
[122] T. H. Wang, T. H. Fang, Y. C. Lin, 2007, “A numerical study of factors affecting the characterization of nanoindentation on silicon,” Mater. Sci. Eng. A, Vol. 447, 244-253.
[123] T. H. Fang and S. H. Kang, 2008, “Effect of indium dopant on surface and mechanical characteristics of ZnO: In nanostructured films,” J. Phys. D: Appl. Phys., Vol. 41, 245303.
[124] T. H. Fang, W. J. Chang, 2006, “Nanomechanical characterization of amorphous hydrogenated carbon thin films,” Appl. Surf. Sci., Vol. 252, 6243-6248.
[125] T. H. Fang, T. H. Wang, S. H. Kang, 2009, “Nanomechanical and surface behavior of polydimethylsiloxane-filled nanoporous anodic alumina,” J. Mater. Sci., Vol. 44, 1588-1593.
[126] R. L. Smith, G. E. Sandland, 1922, “An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness,” Imeche. Eem., Vol. 102, 623-641.
[127] M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, C. Loppacher, C. Gerber, and H.-J. Güntherodt, 1998, “Dynamic SFM with true atomic resolution on alkali halide surfaces,” Appl. Phys. A, Vol. 66, 293-294.
[128] H. Shindo, M. Ohashi, K. Baba, and A. Seo, 1996, “AFM observation of monatomic step movements on NaCl (001) with the help of adsorbed water,” Surf. Sci., Vol. 357, 111-114.
[129] P. E. Sheehan, 2005, “The wear kinetics of NaCl under dry nitrogen and at low humidities,” Chem. Phy. Lett., Vol. 410, 151-155.
[130] L. Xiong, L. Bai, and J. Liu, 2014, “Strength and equation of state of NaCl from radial x-ray diffraction,” J. Appl. Phys., Vol. 115, 033509.
[131] R. J. Roberts and R. C. Rowe, 1987, “Brittle/ductile behaviour in pharmaceutical materials used in tableting,” Int. J. Pharmaceut., Vol. 36, 205-209.
[132] W. C. Duncan-Hewitt and G. C. Weatherly, 1989, “Evaluating the hardness, Young's modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques,” J. Mater. Sci. Lett., Vol. 8, 1350-1352.
[133] K. P. Lin, T. H. Fang, I. Stachiv and T. C. Cheng, 2016, “Mechanical response and deformation of Ni3Al7 alloy using in situ transmission electron microscopy compression and nanoindentation,” Sci. Adv. Mater., Vol. 8, 1571-1578.
[134] S. N. Dub, V. V. Brazhkin, N. V. Novikov, G. N. Tolmachova, P. M. Litvin, L. M. Lityagina, T. I. Dyuzheva, 2010, “Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation,” J. Superhard Mater., Vol. 32, 55-67.
[135] C. Lu, Y. W. Mai, P. L. Tam and Y. G. Shen, 2007, “Nanoindentation-induced elastic–plastic transition and size effect in α-Al2O3(0 0 0 1),” Phil. Mag. Lett., Vol. 87, 409-415.
[136] F. C. Zhang, H. H. Luo, S. G. Roberts, 2007, “Mechanical properties and microstructure of Al2O3/mullite composite,” J. Mater. Sci., Vol. 42, 6798-6802.
[137] E. Csehov´a, J. Andrejovsk´a, A. Limpichaipanit, J. Dusza, R. Todd, 2010, “Indentation load-size effect in Al2O3–SIC nanocomposites,” J. Electron. Eng., Vol. 61 305-307.
[138] P. G. Li, M. Lei, W. H. Tang, 2010, “Raman and photoluminescence properties of α-Al2O3 microcones with hierarchical and repetitive superstructure,” Mater. Lett., Vol. 64 161-163.
[139] X. Deng, N. Chawla, K. K. Chawla and M. Koopman, 2004, “Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation,” Acta Mater., Vol. 52, 4291-4303.
[140] T. H. Fang, C. I Weng, J. G. Chang, 2003, “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Mater. Sci. Eng.: A, Vol. 357, 7-12.
[141] P. Church, R. Claridge, P. Ottley, I. Lewtas, N. Harrison, P. Gould, C. Braithwaite and D. Williamson, 2013, “Investigation of a Nickel-Aluminum Reactive Shaped Charge Liner,” J. Appl. Mech., Vol. 80, 031701.
[142] S. M. Foiles and M. S. Daw, 1987, “Application of the embedded atom method to Ni3Al,” J. Mater. Res., Vol. 2, 5-15.
[143] L. Zheng, C. Xiao, G. Zhang, 2012, “Brittle fracture of gas turbine blade caused by the formation of primary β-NiAl phase in Ni-base superalloy,” Eng. Fail. Anal., Vol. 26, 318-324.
[144] B. J. Lee, C. S. Lee, J. C. Lee, 2003, “Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: a molecular dynamics simulation study,” Acta Mater., Vol. 51, 6233-6240.
[145] P. Nagpal, I. Baker, and J. X. Horton, 1994, “TEM in-situ straining of NiAl,” Intermetallics, Vol. 2, 23-29.
[146] J. Mayer, L. A. Giannuzzi, T. Kamino and J. Michael, 2007, “TEM sample preparation and FIB-induced damage,” MRS Bull., Vol. 32, 400-407.
[147] W. Wang and K. Lu, 2002, “Nanoindentation measurement of hardness and modulus anisotropy in Ni3Al single crystals,” J. Mater. Res., Vol. 17, 2314-2320.
[148] H. Bei and E. P. George, 2005, “Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy,” Acta Mater., Vol. 53, 69-77.
[149] O. Culha, E. Celik, N. F. A. Azem, I. Birlik, M. Toparli, and A. Turk, 2008, “Microstructural, thermal and mechanical properties of HVOF sprayed Ni–Al-based bond coatings on stainless steel substrate,” J. Mater. Process. Technol., Vol. 204, 221-230.
[150] A. Alavi, K. Mirabbaszadeh, P. Nayebi, E. Zaminpayma, 2010, “Molecular dynamics simulation of mechanical properties of Ni–Al nanowires,” Comput. Mater. Sci., Vol. 50, 10-14.
[151] C. D. Wu, T. H. Fang, P. H. Sung, Q. C. Hsu, 2012, “Critical size, recovery, and mechanical property of nanoimprinted Ni–Al alloys investigation using molecular dynamics simulation,” Comput. Mater. Sci,. Vol. 53, 321-328.
[152] J. Frenzel, E. P. George, A. Dlouhy, Ch.Somsen, M. F .-X. Wagner, G. Eggeler, 2010, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Mater., Vol. 58, 3444-3458.
[153] M. Arciniegas, J. Casals, J. M. Manero, J. Pe˜na, F. J. Gil, 2008, “Study of hardness and wear behaviour of NiTi shape memory alloys,” J. Alloy. Compd., Vol. 460, 213–219.
[154] S. Rajagopalan, A. L. Little, M. A. M. Bourke, and R. Vaidyanathan, 2005, “Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented indentation, and extensometry,” Appl. Phys. Lett., Vol. 86, 081901.
[155] S. R. Jian, T. H. Fang, and D. S. Chuu, 2003, “Analysis of physical properties of III-nitride thin films by nanoindentation,” J. Electron. Mater., Vol. 32, 496-500.
[156] S. M. Foiles, M. I. Baskes, and M. S. Daw, 1988, “Erratum: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B, Vol. 33, 10378.
[157] G.S. Firstov, R.G. Vitchev , H. Kumar, B. Blanpain, J. V. Humbeeck, 2002, “Surface oxidation of NiTi shape memory alloy,” Biomaterials, Vol. 23, 4863–4871.
[158] Y. Q. Fu, W. M. Huang, H. J. Du, X. Huang, J. P. Tan, and X. Y. Gao, 2001, “Characterization of TiNi shape-memory alloy thin films for MEMS applications,” Surf. Coat. Tech., Vol. 145, 107–112.
[159] I. Kaya, H. Tobe, H. E. Karaca, B. Basaran, M. Nagasako, R. Kainuma, Y. Chumlyakov, 2016, “Effects of aging on the shape memory and superelasticity behavior of ultrahigh strength Ni54Ti46 alloys under compression,” Mater. Sci. Eng. A, Vol. 678, 93–100.

電子全文 電子全文(網際網路公開日期:20220121)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔