|
[1] F. George, V. Vander, 1985, "Metallography and Microstructures," ASM Handbook, Vol. 9, 12. [2] S. H. R. Sanei, R. S. Fertig III, 2015, “Uncorrelated volume element for stochastic modeling of microstructures based on local fiber volume fraction variation,” Compos. Sci. Technol., Vol. 117, 191-198. [3] S. H. R. Sanei, E. J Barsotti, D. Leonhardt and R. S Fertig III, 2016, “Characterization, synthetic generation, and statistical equivalence of composite microstructures,” J. Comp. Mater., Vol. 51, 1817-1829. [4] T. Ye, L. Li, P. Guo, G. Xiao, Z. Chen, 2016, “Effect of aging treatment on the microstructure and flow behavior of 6063 aluminum alloy compressed over a wide range of strain rate,” Int. J. Impact Eng., Vol. 90, 72–80. [5] S. M. Bayazid, H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, A. Mirhaji, 2016, “Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy,” Mater. Sci. Eng.: A, Vol. 649, 293–300. [6] J. Bočana, S. Tsurekawab, A. Jägera, 2017, “Fabrication and in situ compression testing of Mg micropillars with a nontrivial cross section: Influence of micropillar geometry on mechanical properties,” Mater. Sci. Eng.: A, Vol. 687, 337–342. [7] E. Ghasali, A. Pakseresht, A. Rahbari, H. Eslami-shahed, M. Alizadeh, T. Ebadzadeh, 2016, “Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al-SiC-TiC composites,” J. Alloy Compd. Vol. 666, 366-371. [8] Y. Xiao, J. Wehrs, H. Ma, T. Al-Samman, S. Korte-Kerzel, M. Gökend, J. Michler, R. Spolenak, J. M. Wheeler, 2017, “Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions,” Scripta Mater., Vol. 127, 191–194. [9] B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, 2016, “Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression,” J. Mater. Eng. Perform., Vol. 25, 2985-2992. [10] J. T. Kim, S. W. Lee, S. H. Hong, H. J. Park, J. Y. Park, N. Lee, Y. Seo, W. M. Wang, J. Ma. Parkd, K. B. Kim, 2016, “Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites,” Mater. Design, Vol. 92, 1038–1045. [11] E. Guo, S. S. Singh, C. S. Kaira, X. Meng, Y. Xu, L. Luo, M. Wang, N. Chawla, 2017, “Mechanical properties of microconstituents in Nb-Si-Ti alloy by micropillar compression and nanoindentation,” Mater. Sci. Eng.: A, Vol. 687, 99–106. [12] H. Gleiter, 2000, “Nanostructured materials: basic concepts and microstructure,” Acta Mater., Vol. 48, 1-29. [13] A. Henglein, 1989, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chem. Rev., Vol. 89, 1861–1873. [14] Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, 2010, “Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption”, Nano Let., Vol. 10, 3823–3827.
[15] J. T. Kwon, H. G. Shin, Y. H. Seo, B. H. Kim, H. G. Lee, J. S. Lee, 2009, “Simple fabrication method of hierarchical nano-pillars using aluminum anodizing processes,” Curr. Appl. Phys., Vol. 9, 81–85. [16] P. Patel, 2010, “Nanopillars that Trap More Light of the next generation of technology,” MIT Technol. Rev.. [17] H. Hahn, K.A. Padmanabhan, 1995, “Mechanical response of nanostructured materials,” Nanostruct. Mater., Vol. 6, 191-200. [18] H. Hahn, K.A. Padmanabhan, 1995, “Deformation behavior and possible applications of nanostructured materials,” Adv. Mat. Res., Vol. 3, 2119-2120. [19] K.A. Padmanabhan, H. Hahn, 1996, “Snthesis and Processing of Nanocrystalline Powder,” The Minerals, Metals and Materials Society, Warrendale, USA, 21. [20] K.A. Padmanabhan, 2001, “Mechanical properties of nanostructured materials,” Mater. Sci. Eng.: A, Vol. 304–306, 200–205. [21] H. Yin, Y. He, Z. Moumni, Q. Sun, 2016, “Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy,” Int. J. Fatigue, Vol. 88, 166–177. [22] K. A. Darling, M. A. Tschopp, R. K. Guduru, W. H. Yin, Q. Wei, L. J. Kecskes, 2014, “Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion,” Acta Mater., Vol. 76, 168–185. [23] L. Zhu, H. Ruan, A. Chen, X. Guo, J. Lu, 2017, “Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels,” Acta Mater., Vol. 128, 375-390. [24] G. M. Cheng, T. H. Chang, Q. Qin, H. Huang, and Y. Zhu, 2014, “Mechanical Properties of Silicon Carbide Nanowires: Effect of Size- Dependent Defect Density,” Nano Lett., Vol. 14, 754–758. [25] F. Banhart, 2008, ” In-Situ Electron Microscopy at High Resolution,” Singapore: World Scientific, ISBN 978-9812797339. [26] D. Kiener and A. M. Minor, 2011, “Source-controlled yield and hardening of Cu(1 0 0) studied by in situ transmission electron microscopy,” Acta Mater., Vol. 59, 1328-1337. [27] M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, 2012, “Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy,” Adv. Mater.,Vol. 24, 6034-6041. [28] M. A. Haque and M. T. A. Saif, 2004, “Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study,” P. Natl. Acad. Sci. USA, Vol. 101, 6335–6340. [29] Y. C. Hsieh, L. Zhang, T. F. Chung, Y. T. Tsai, J. R. Yang, T. Ohmur, T. Suzuki, 2016, “In-situ transmission electron microscopy investigation of the deformation behavior of spinodal nanostructured δ-ferrite in a duplex stainless steel,” Scripta Mater., Vol. 125, 44-48. [30] Y. Kabiri, N. Schrenker, J. Müller, M. Mačković, E. Spiecker, 2017, “Direct observation of dislocation formation and plastic anisotropy in Nb2AlC MAX phase using in situ nanomechanics in transmission electron microscopy,” Scripta Mater., Vol. 137, 104-108. [31] T. H. Fang, Y. J. Hsiao, S. H. Kang, 2015, “Mechanical characteristics of copper indium gallium diselenide compound nanopillars using in situ transmission electron microscopy compression,” Scripta Mater., Vol. 108, 130-135.
[32] S. H. Kang, T. H. Fang, 2014, “Size effect on compression properties of GaN nanocones examined using in situ transmission electron microscopy,” J. Alloy. Compd., Vol. 597, 72-78. [33] S. H. Kang, T. H. Fang, T. H. Chen, C. H. Kuo, 2013, “Size effect on nanomechanical properties of ZnO cones using in situ transmission electron microscopy,” Curr. Appl. Phys., Vol. 13, 1689-1696. [34] L. G. Liu and W. A. Bassett, 1973, “Compression of Ag and phase transformation of NaCl,” J. Appl. Phys., Vol. 44, 1475-1479. [35] J. Fraxedas, S. Garcia-Manyes, P. Gorostiza, and F. Sanz, 2002, “Nanoindentation: Toward the sensing of atomic interactions,” P. Natl. Acad. Sci. USA, Vol. 99, 5228-5232. [36] K. S. Singh and R. S. Chanhan, 2002, “Analysis of thermodynamic and thermoelastic properties of ionic solids at high temperatures,” Physica B: Condensed Matter., Vol. 315, 74-81. [37] N. Sata, G. Shen, M. L. Rivers, and S. R. Sutton, 2002, “Pressure-volume equation of state of the high-pressure B2 phase of NaCl,” Phys. Rev. B, Vol. 65, 104114. [38] X. Li and R. Jeanloz, 1987, “Measurement of the B1-B2 transition pressure in NaCl at high temperatures,” Phys. Rev. B, Vol. 36, 474-479. [39] S. S. Yosiko, 1983, “Phase transitions and equations of state for the sodium halides: NaF NaCl, NaBr, and NaI,” J. geophys. Res.: solid earth, Vol. 88, 3543-3548. [40] S. Ono, J. P. Brodholt, D. Alfe, M. Alfredsson, and G. D. Price, 2008, “Ab initio molecular dynamics simulations for thermal equation of state of B2B2-type NaCl,” J. Appl. Phys., Vol. 103, 023510. [41] G. Binnig, C. F. Quate, and C. Gerber, 1986, “Atomic Force Microscope,” Phys. Rev. Lett., Vol. 56, 930-933. [42] A. Folch, P. Gorostiza, J. Servat, J. Tejada, and F. Sanz, 1997, “Enhanced surface atomic step motion observed in real time after nanoindentation of NaCl(100) ,” Surf. Sci., Vol. 380, 427-433. [43] C. L. Wang, R. Z. Xu, L. M. Tang and J. Biomed. 2013, “The Local Heating Effect by Magnetic Nanoparticles Aggregate on Support Lipid Bilayers,” J. Biomed. Nanotechnol., Vol. 9, 1210-1215. [44] H. Tang, X. Bouju, C. Joachim, C. Girard, and J. Devillers, 1998, “Theoretical study of the atomic-force-microscopy imaging process on the NaCl(001) surface,” J. Chem. Phys., Vol. 108, 359-367. [45] Z. H. He, C. X. Qian, 2014, “Nanoindentation Characteristics of Cement with Metakaolin Under Different Curing Systems,” Nanosci. Nanotech. Let., Vol. 6, 721-725. [46] S. H. Wang, Y. J. Hsiao, T. H. Fang, S. L. Chen, and S. H. Kang, 2015, “P3HT:PCBM Doped with Multi-Walled Carbon Nanotubes for Enhancing Efficiency and Nanomechanical Properties of Hybrid Photovoltaics,” Sci. Adv. Mater., Vol. 7, 278-282. [47] D. K. Devarajan, K. Sivakumar, and J. Ramasamy, 2014, “Microstructure characteristics of copper single layer and copper/titanium multilayer coatings: Nanomechanical properties and bactericidal activities,” Mater Express., Vol. 4, 453-464. [48] Z. H. Hong, T. H. Fang, and S. F. H. Wang, 2012, “Interface and Nanoscale Mechanical Behavior of Zinc Oxide During Nanoindentation by Molecular Dynamics Simulation,” Nanosci. Nanotech. Lett., Vol. 4, 13-19. [49] T. H. Fang, T. H. Wang, and J. H. Wu, 2010, “Mechanical Properties of Multilayered Films Using Different Nanoindenters,” J. Nanosci. Nanotech., Vol. 10, 4568-4572. [50] H. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, D. E. Niesz, 2004, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci., Vol. 236, 120-130. [51] S. Graça, V.Trabadelo, A. Neels, J. Kuebler, V. Le Nader, G. Gamez, M. Döbeli, K.Wasmer, 2014, “Influence of mosaicity on the fracture behavior of sapphire,” Acta Mater., Vol. 67, 67-80. [52] R Sabia, V A Greenhut and C G Pantano, 1999, “Finishing of Advanced Ceramics and Glasses,” Indianapolis: American Ceramic Society, 102. [53] E. R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, 2009, “Sapphire: Material, Manufacturing, Applications,” (New York: Springer). [54] W. G. Mao, Y. G. Shen, C. Lu, 2011, “Nanoscale elastic-plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation,” J. Eur. Ceram. Soc., Vol. 31, 1865-1871. [55] A. H. Heuer, C. L. Jia, K. P. D. Lagerlöf, 2010, “The core structure of basal dislocations in deformed sapphire (α-Al2O3) ,” Science, Vol. 330, 1227-1231. [56] J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, 2010, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire,” Opt. Express, Vol. 18, 8300-8310. [57] T. Kudrius, G. Šlekys and S. Juodkazis, 2010, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys., Vol. 43, 145501. [58] Z. Zhang, R. W. Hicks, T. R. Pauly, and T.J. Pinnavaia, 2002, “Mesostructured forms of γ-Al2O3,” J. Am. Chem. Soc., Vol. 124, 1592-1593. [59] H. C. Lee, H. J. Kim, S. H. Chung, K. H. Lee, H. C. Lee, and J. S. Lee, 2003, “Synthesis of unidirectional alumina nanostructures without added organic solvents,” J. Am. Chem. Soc., Vol. 125, 2882-2883. [60] M. Nakagawa, I. Yamamoto, N. Yamashita, 1998, “Detection of organic molecules dissolved in water using a γ-Al2O3 chemiluminescence-based sensor,” Anal. Sci., Vol. 14, 209-214. [61] G. H. Liu, Y. F. Zhu, X. R. Zhang, and B. Q Xu, 2002, “Chemiluminescence determination of chlorinated volatile organic compounds by conversion on nanometer TiO2,” Anal. Chem., Vol. 74, 6279-6284. [62] H. Chen, F, Tian, J. Chi, H. Du, 2014, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE, Vol. 9098, 90980. [63] B. Liu, Z. Yu, Z. Tian, D. Homa, C. Hill, A. Wang, and G. Pickrell, 2015, “Temperature dependence of sapphire fiber Raman scattering,” Opt. Lett., Vol. 40, 2041-2044. [64] N. F. Wu, H. J. Chen, Y. L. Chueh, S. J. Lin, L. J. Chou and W. K. Hsu, 2005, “Doping spiral alumina nanowires,” Chem. Commun., Vol. 2, 204-206. [65] C. C. Tang, S. S. Fan, P. Li, M. Lamy de la Chapelle, H. Y. Dang, 2001, “In situ catalytic growth of Al2O3 and Si nanowires,” J. Cryst. Growth, Vol. 224, 117-121. [66] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, C. H. Ye and L. D. Zhang, 2004, “Alumina nanowire arrays standing on aporous anodic alumina membrane,” Nanotechnology, Vol. 15, 189-191.
[67] Y. B. Li, Y. Bando, D. Golberg, 2005, “Single-crystalline α-Al2O3 nanotubes converted from Al4O4C nanowires,” Adv. Mater., Vol. 17, 1401-1405. [68] J. Zhou, S. Z Deng, J. Chen, J. C She, N. S Xu, 2002, “Synthesis of crystalline alumina nanowires and nanotrees,” Chem. Phys. Lett., Vol. 365, 505-528. [69] X. S. Fang, C. H. Ye, L. D. Zhang, T. Xie, 2005, “Twinning mediated growth of Al2O3 nanobelts and their enhanced dielectric responses,” Adv. Mater., Vol. 17, 1661-1665. [70] R. Heid, D. Strauch, and K. P. Bohnen, 2000, “Ab initio lattice dynamics of sapphire,” Phys. Rev. B, Vol. 61, 8625. [71] A. Krell, S. Schädlich, 2001, “Depth sensing hardness in sapphire and in sintered sub-μm alumina,” Int. J. Refract. Met. Hard Mater, Vol. 19, 237-243. [72] W. J. Chang, T. H. Fang, 2003, “Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation,” J. Phys. Chem. Solids, Vol. 64, 1279-1283. [73]Y. C. Fan, T. H. Fang, K. M. Lin and R. Z. Qiu, 2017, “Nanoindentation and Deformation of Multilayered Au/Cu Films,” Smart Sci., Vol. 5, 1-13. [74] M. A. Tschopp and D. L. McDowell, 2008, “Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading,” J. Mech. Phys. Solids, Vol. 56, 1806-1830. [75] Z. Yang, Q. Yang, G. Zhang, 2017, “Poisson's ratio and Young's modulus in single-crystal copper nanorods under uniaxial tensile loading by molecular dynamics,” Phys. Lett. A, Vol. 381, 280-283. [76] W. N. Li, J. M. Xue, J. X. Wang and H. L. Duan, 2014, “Mechanical properties of self-irradiated single-crystal copper,” Chin. Phys., Vol. 23, 036101. [77] S. Suresh, 2001, “Graded Materials for Resistance to Contact Deformation and Damage,” Science, Vol. 292, 2447-2451. [78] T. H. Fang, W. J. Chang, 2003, “Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique,” Microelectron. Eng., Vol. 65, 231-238. [79] T. Y. Zhang, L. Q. Chen, and R. Fu, 1999, “Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture,” Acta Mater., Vol. 47, 3869-3878. [80] W. W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson, 1998, “Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations,” J. Mater. Res., Vol. 13, 421-439. [81] W. C. Oliver and G. M. Pharr, 1992, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., Vol. 7, 1564-1583. [82] A. Gouldstone, K. J. Van Vlit, and S. Suresh, 2001, “Nanoindentation: Simulation of defect nucleation in a crystal,” Nature, Vol. 411, 656. [83] T. Y. Zhang and W. H. Xu, 2002, “Surface effects on nanoindentation,” J. Mater. Res., Vol. 17, 1715-1720. [84] D. Kiener, P. J. Guruprasad, S. M. Keralavarma, G. Dehm, and A. A. Benzerga, 2011, “Work hardening in micropillar compression: In situ experiments and modeling,” Acta Mater., Vol. 59, 3825-3840.
[85] C. C. Huang, T. C. Chiang, T. H. Fang, 2015, “Grain size effect on indentation of nanocrystalline copper,” Appl. Surf. Sci., Vol. 353, 494-498. [86] M. J. Mayo, 1991, “The Mechanical Behavior of a Grain Boundary-Rich (Nanocrystalline) Metal,” Mater. Res. Soc., Vol. 229, 197-206. [87] P. G. Sanders, J. A. Eastman, and J. R. Weertman, 1997, “Elastic and tensile behavior of nanocrystalline copper and palladium,” Acta Mater., Vol. 45, 4019-4025. [88] H. Tang, X. Bouju, C. Joachim, C. Girard, and J. Devillers, 1998, “Theoretical study of the atomic-force-microscopy imaging process on the NaCl (001) surface,” J. Chem. Phys., Vol. 108, 359-367. [89] Z. H. He; C. X. Qian, 2014, “Nanoindentation Characteristics of Cement with Metakaolin Under Different Curing Systems,” Nanosci. Nanotechnol. Lett., Vol. 6, 721-725. [90] D. K. Devarajan, K. Sivakumar, J. Ramasamy, 2014, “Microstructure characteristics of copper single layer and copper/titanium multilayer coatings: Nanomechanical properties and bactericidal activities,” Mater. Express, Vol. 4, 453-462. [91] M. Swain, S. Singh, S. Basu, D. Bhattacharya, and Mukul Gupta, 2014, “Identification of a kinetic length scale which dictates alloy phase composition in Ni-Al interfaces on annealing at low temperatures,” J. Appl. Phys., Vol. 116, 222208. [92] C. D Wu, P. H. Sung, T. H. Fang, 2013, “Study of deformation and shape recovery of NiTi nanowires under torsion,” J. Mol. Model., Vol. 19, 1883-1890. [93] C. D. Wu, T. H. Fang, C. Y. Chen, C. I Weng, 2014, “Effect of nanograin size on nanoformed NiTi alloys,” Appl. Surf. Sci., Vol. 292, 500-505. [94] L. Xiong, L. Bai, and J. Liu, 2014, “Strength and equation of state of NaCl from radial x-ray diffraction,” J. Appl. Phys., Vol. 115, 033509. [95] V. Karthik, S. Ghosh S. K. Pabi, 2013, “Effects of bulk stoichiometry and surface state of NiAl nano-dispersoid on the stability and heat transfer characteristics of water based nanofluid,” Exp. Therm. Fluid Sci., Vol. 48, 156-162. [96] R. Seymour, A. Hemeryck, K. Nomura, W. Wang, R. K. Kalia, A. Nakano and P.Vashishta, 2014, “Nanoindentation of NiAl and Ni3Al crystals on (100), (110), and (111) surfaces: A molecular dynamics study,” Appl. Phys. Lett., Vol. 104, 141904. [97] E. Vitali, C. T. Wei, D. J. Benson, M. A. Meyers, 2011, “Effects of geometry and intermetallic bonding on the mechanical response, spalling and fragmentation of Ni–Al laminates,” Acta Mater., Vol. 59, 5869-5880. [98] S. K. Pabi, J. Joardar, I. Manna, and B. S. Murty, 1997, “Nanocrystalline phases in Cu-Ni, Cu-Zn and Ni-Al systems by mechanical alloying”, Nanostruct. Mater., Vol. 9, 149-152. [99]Y. F. Chen, P. H. Sung, C. D. Wu, T. H. Fang, 2012, “Studies of nanomechanical properties and fatigue strength of annealed Ni–Ti shape memory alloy,” Mater. Lett., Vol. 71, 84–87. [100] C. Boller In: Friswell M, editor. 2007, “Adaptive aerospace structures with smart technologies— a retrospective and future view adaptive structure: engineering applications,” New York: Wiley; 163–90. [101] F. EI Feninat, G. Laroche, M. Fiset, D. Mantovani, 2002, “Shape memory materials for biomedical applications,” Adv. Eng. Mater., Vol. 4, 91–104.
[102] S. A. Shabalovskaya. 1996, “On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys,” Bio. Med. Mater. Eng., Vol. 6, 267–289. [103] K. R. Dai, Y. Y. Chu, 1996, “Studies and applications of NiTi shape memory alloys in the medical field in China,” Bio. Med. Mater. Eng., Vol. 6, 233–240. [104] N. B. Morgan, 2004, “Medical shape memory alloy applications – the market and its products,” Mater. Sci. Eng.: A, Vol. 378, 16–23. [105] L. Petrini, F. Migliavacca, P. Massarotti, 2005, “Computational studies of shape memory alloy behaviour in biomedical applications,” J. Biomech. Eng., Vol. 127, 716–725. [106] W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, 1998, “Thin-film shape-memory alloy actuated micropumps ,” J. Microelectromech. Syst., Vol. 7, 245–251. [107] E. Makino, T. Mitsuya, T. Shibata, 2001, “Fabrication of TiNi Shape Memory Micropump,” Sens. Actuators. A, Vol. 88, 256–262. [108] C. P. Frick, B. G. Clark, A. S. Schneider, R. Maaß, S. V. Petegem and H. V. Swygenhoven, 2010, “On the plasticity of small-scale nickel–titanium shape memory alloys,” Scripta Mater., Vol. 62, 492–495. [109] Y. Zhong, K. Gall, T. Zhu, 2012, “Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars,” Acta Mater., Vol. 60, 6301–6311. [110] X. Huang, J. Nohava, B. Zhang and A.G. Ramirez, 2011, “Nanoindentation of NiTi shape memory thin films at elevated temperatures,” Int. J. Smart and Nano Mater., Vol. 2, 39-49. [111] T. Duerig, A. Pelton, D. Sto¨ckel, 1999, “An overview of nitinol medical applications,” Mater. Sci. Eng. A, Vol. 149, 273–275. [112] S. Miyazaki, T. W. Duerig, K. N. Melton, D. Sto¨ckel, Wayman CM, editors. 1990, “Engineering aspects of shape memory alloys,” London: Butterworth-Heinemann. [113] T. Simon, A. Kroger, C. Somsen, A. Dlouhy, G. Eggeler, 2010, “On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys,” Acta Mater., Vol. 58, 1850-1860. [114] J. Ye, R. K. Mishra, A. R. Pelton, A. M. Minor, 2010, “Direct observation of the NiTi martensitic phase transformation in nanoscale volumes,” Acta Mater., Vol. 58, 490–498. [115] C. P. Frick, S. Orso, E. Arzt, 2007, “Loss of pseudoelasticity in nickel-titanium sub-micron compression pillars,” Acta Mater., Vol. 55, 3845-3855. [116] M. D. Uchic, D. M. Dimiduk, J. N. Florando, W. D. Nix, 2004, “Sample dimensions’ influence strength and crystal plasticity,” Science, Vol. 305 , 986-989. [117] D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, 2006, “Scale-Free Intermittent Flow in Crystal Plasticity,” Science, Vol. 312, 1188-1190. [118] A.R. Rahai, S. Kazemi, 2008, “Buckling analysis of non-prismatic columns based on modified vibration modes,” Commun. Nonlinear Sci. Numer. Simul., Vol. 13, 1721-1735. [119] H. W. Haslach, R. W. Armstrong Jr., 2004, “Deformable Bodies and Their Material Behavior,” J. Wiley & Sons, pp. 496. [120] H. Kang, Y. Zhang, Mo Yang, 2011, “Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions,” Appl. Phys. A, Vol. 103, 1001-1008. [121] M. S. Daw and M. I. Baskes, 1984, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B, Vol. 29, 6443-6453. [122] T. H. Wang, T. H. Fang, Y. C. Lin, 2007, “A numerical study of factors affecting the characterization of nanoindentation on silicon,” Mater. Sci. Eng. A, Vol. 447, 244-253. [123] T. H. Fang and S. H. Kang, 2008, “Effect of indium dopant on surface and mechanical characteristics of ZnO: In nanostructured films,” J. Phys. D: Appl. Phys., Vol. 41, 245303. [124] T. H. Fang, W. J. Chang, 2006, “Nanomechanical characterization of amorphous hydrogenated carbon thin films,” Appl. Surf. Sci., Vol. 252, 6243-6248. [125] T. H. Fang, T. H. Wang, S. H. Kang, 2009, “Nanomechanical and surface behavior of polydimethylsiloxane-filled nanoporous anodic alumina,” J. Mater. Sci., Vol. 44, 1588-1593. [126] R. L. Smith, G. E. Sandland, 1922, “An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness,” Imeche. Eem., Vol. 102, 623-641. [127] M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, C. Loppacher, C. Gerber, and H.-J. Güntherodt, 1998, “Dynamic SFM with true atomic resolution on alkali halide surfaces,” Appl. Phys. A, Vol. 66, 293-294. [128] H. Shindo, M. Ohashi, K. Baba, and A. Seo, 1996, “AFM observation of monatomic step movements on NaCl (001) with the help of adsorbed water,” Surf. Sci., Vol. 357, 111-114. [129] P. E. Sheehan, 2005, “The wear kinetics of NaCl under dry nitrogen and at low humidities,” Chem. Phy. Lett., Vol. 410, 151-155. [130] L. Xiong, L. Bai, and J. Liu, 2014, “Strength and equation of state of NaCl from radial x-ray diffraction,” J. Appl. Phys., Vol. 115, 033509. [131] R. J. Roberts and R. C. Rowe, 1987, “Brittle/ductile behaviour in pharmaceutical materials used in tableting,” Int. J. Pharmaceut., Vol. 36, 205-209. [132] W. C. Duncan-Hewitt and G. C. Weatherly, 1989, “Evaluating the hardness, Young's modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques,” J. Mater. Sci. Lett., Vol. 8, 1350-1352. [133] K. P. Lin, T. H. Fang, I. Stachiv and T. C. Cheng, 2016, “Mechanical response and deformation of Ni3Al7 alloy using in situ transmission electron microscopy compression and nanoindentation,” Sci. Adv. Mater., Vol. 8, 1571-1578. [134] S. N. Dub, V. V. Brazhkin, N. V. Novikov, G. N. Tolmachova, P. M. Litvin, L. M. Lityagina, T. I. Dyuzheva, 2010, “Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation,” J. Superhard Mater., Vol. 32, 55-67. [135] C. Lu, Y. W. Mai, P. L. Tam and Y. G. Shen, 2007, “Nanoindentation-induced elastic–plastic transition and size effect in α-Al2O3(0 0 0 1),” Phil. Mag. Lett., Vol. 87, 409-415. [136] F. C. Zhang, H. H. Luo, S. G. Roberts, 2007, “Mechanical properties and microstructure of Al2O3/mullite composite,” J. Mater. Sci., Vol. 42, 6798-6802. [137] E. Csehov´a, J. Andrejovsk´a, A. Limpichaipanit, J. Dusza, R. Todd, 2010, “Indentation load-size effect in Al2O3–SIC nanocomposites,” J. Electron. Eng., Vol. 61 305-307. [138] P. G. Li, M. Lei, W. H. Tang, 2010, “Raman and photoluminescence properties of α-Al2O3 microcones with hierarchical and repetitive superstructure,” Mater. Lett., Vol. 64 161-163. [139] X. Deng, N. Chawla, K. K. Chawla and M. Koopman, 2004, “Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation,” Acta Mater., Vol. 52, 4291-4303. [140] T. H. Fang, C. I Weng, J. G. Chang, 2003, “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Mater. Sci. Eng.: A, Vol. 357, 7-12. [141] P. Church, R. Claridge, P. Ottley, I. Lewtas, N. Harrison, P. Gould, C. Braithwaite and D. Williamson, 2013, “Investigation of a Nickel-Aluminum Reactive Shaped Charge Liner,” J. Appl. Mech., Vol. 80, 031701. [142] S. M. Foiles and M. S. Daw, 1987, “Application of the embedded atom method to Ni3Al,” J. Mater. Res., Vol. 2, 5-15. [143] L. Zheng, C. Xiao, G. Zhang, 2012, “Brittle fracture of gas turbine blade caused by the formation of primary β-NiAl phase in Ni-base superalloy,” Eng. Fail. Anal., Vol. 26, 318-324. [144] B. J. Lee, C. S. Lee, J. C. Lee, 2003, “Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: a molecular dynamics simulation study,” Acta Mater., Vol. 51, 6233-6240. [145] P. Nagpal, I. Baker, and J. X. Horton, 1994, “TEM in-situ straining of NiAl,” Intermetallics, Vol. 2, 23-29. [146] J. Mayer, L. A. Giannuzzi, T. Kamino and J. Michael, 2007, “TEM sample preparation and FIB-induced damage,” MRS Bull., Vol. 32, 400-407. [147] W. Wang and K. Lu, 2002, “Nanoindentation measurement of hardness and modulus anisotropy in Ni3Al single crystals,” J. Mater. Res., Vol. 17, 2314-2320. [148] H. Bei and E. P. George, 2005, “Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy,” Acta Mater., Vol. 53, 69-77. [149] O. Culha, E. Celik, N. F. A. Azem, I. Birlik, M. Toparli, and A. Turk, 2008, “Microstructural, thermal and mechanical properties of HVOF sprayed Ni–Al-based bond coatings on stainless steel substrate,” J. Mater. Process. Technol., Vol. 204, 221-230. [150] A. Alavi, K. Mirabbaszadeh, P. Nayebi, E. Zaminpayma, 2010, “Molecular dynamics simulation of mechanical properties of Ni–Al nanowires,” Comput. Mater. Sci., Vol. 50, 10-14. [151] C. D. Wu, T. H. Fang, P. H. Sung, Q. C. Hsu, 2012, “Critical size, recovery, and mechanical property of nanoimprinted Ni–Al alloys investigation using molecular dynamics simulation,” Comput. Mater. Sci,. Vol. 53, 321-328. [152] J. Frenzel, E. P. George, A. Dlouhy, Ch.Somsen, M. F .-X. Wagner, G. Eggeler, 2010, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Mater., Vol. 58, 3444-3458. [153] M. Arciniegas, J. Casals, J. M. Manero, J. Pe˜na, F. J. Gil, 2008, “Study of hardness and wear behaviour of NiTi shape memory alloys,” J. Alloy. Compd., Vol. 460, 213–219. [154] S. Rajagopalan, A. L. Little, M. A. M. Bourke, and R. Vaidyanathan, 2005, “Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented indentation, and extensometry,” Appl. Phys. Lett., Vol. 86, 081901. [155] S. R. Jian, T. H. Fang, and D. S. Chuu, 2003, “Analysis of physical properties of III-nitride thin films by nanoindentation,” J. Electron. Mater., Vol. 32, 496-500. [156] S. M. Foiles, M. I. Baskes, and M. S. Daw, 1988, “Erratum: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B, Vol. 33, 10378. [157] G.S. Firstov, R.G. Vitchev , H. Kumar, B. Blanpain, J. V. Humbeeck, 2002, “Surface oxidation of NiTi shape memory alloy,” Biomaterials, Vol. 23, 4863–4871. [158] Y. Q. Fu, W. M. Huang, H. J. Du, X. Huang, J. P. Tan, and X. Y. Gao, 2001, “Characterization of TiNi shape-memory alloy thin films for MEMS applications,” Surf. Coat. Tech., Vol. 145, 107–112. [159] I. Kaya, H. Tobe, H. E. Karaca, B. Basaran, M. Nagasako, R. Kainuma, Y. Chumlyakov, 2016, “Effects of aging on the shape memory and superelasticity behavior of ultrahigh strength Ni54Ti46 alloys under compression,” Mater. Sci. Eng. A, Vol. 678, 93–100.
|