[1] 盧建銘、李銘孝,“引發第三次工業革命的「3D列印」”,中國機械工程學會【第31屆全國學術研討會】暨【103 年度年會】與【科技部機械固力、熱流及能源學門聯合成果發表會】-祝賀翁政義校長七十大壽專利,明日科技面面觀,逢甲大學人言大樓第四國際會議廳,台中,台灣,第115-123頁,12月,2014。
[2] P. Markillie, “A Third Industrial Revolution, The Economist”, Special Report: Manufacturing and Innovation, pp. 3–18, April 2012.
[3] 盧建銘,“3D列印-工業革命4.0之一:前瞻高階3D列印的研發近況”,Available at: https://scitechvista.nat.gov.tw/c/jK4R.htm, Accessed December 2017.
[4] 周至宏,“迎接下一波工業革命-工業4.0”,Available at: https://scitechvista.nat.gov.tw/c/sfSq.htm, Accessed December 2017.
[5] 葉錫誼,“3D列印技術之發展現況與醫學上之應用”,當代醫藥法規月刊,第45期,第3-8頁,2014。
[6] E. Mahoney, “Printing Challenges for First 3D Printer Aboard International Space Station”, NASA, Available at: https://www.nasa.gov/, Accessed December 2017.
[7] L.M. Galantucci, F. Lavecchia, G. Percoco, “Experimental Study Aiming to Enhance the Surface Finish of Fused Deposition Modeled Parts”, CIRP Annals, Vol. 58, No. 1, pp. 189-192, 2009.
[8] J.P. Kruth, M.C. Leu, T. Nakagawa, “Progress in Additive Manufacturing and Rapid Prototyping”, CIRP Annals, Vol. 47, No. 2, pp.525-540, 1998.
[9] 洪宗彬、王祥賓、王鍏晴、陳尹銜、許富銓、呂英誠,“金屬積層製造的化妝師-3D列印後的處理加工”,科學發展,第523期,2016。
[10] B. Vasudevarao, D.P. Natarajan, M. Henderson, “Sensitivity of RP Surface Finish to Process Parameter Variation”, Solid Free-form Fabrication Proceedings, pp. 251-258, 2000.
[11] E.J. McCullough, V.K. Yadavalli, “Surface Modification of Fused Deposition Modeling ABS to Enable Rapid Prototyping of Biomedical Microdevices”, Journal of Materials Processing Technology, Vol. 213, No. 6, pp.947-954, 2013.
[12] A. Lalehpour, A. Barari, “Post processing for Fused Deposition Modeling Parts with Acetone Vapour Bath”, IFAC-PapersOnLine, Vol. 49, No. 31, pp. 42-48, 2016.
[13] 葉錦清,“雷射在積層製造的應用與商機分析”,機械工程會刊,第296 期,第67-76頁,民國105 年3 月。[14] 中國機械工程學會,“3D列印:列印未來 從虛擬到實現”,佳魁文化,台北,2013。
[15] 江育文,“以分子動力學模擬方法探討在加熱速率變化下鈦與鉭金屬奈米粒子應用於雷射粉體熔化成型積層製造(3D 列印)之特性研究”,南台科技大學碩士論文,2016。[16] 鄭正元,汪家昌,“快速原型技術至快速模具技術之發展”,模具技術成果暨論文集,經濟部技術處,台北、台灣,第207-212頁,1999。
[17] Jeremy Rifkin 原著,張體偉、孫豫寧譯,“第三次工業革命世界經濟即將被顛覆”,新能源與商務、政治、教育的全面革命(The Third Industrial Revolution: How Lateral Power Is Transforming Energy),經濟新潮社出版,2013。
[18] 廖漢聰,“3D列印於顱顏重建的應用”,長庚醫訊,38卷,2期,第18-20頁,2017。
[19] 葉文凌,“3D列印於骨科應用”,長庚醫訊,38卷,2期,第16-17頁,2017。
[20] M.M. Porter, N. Ravilumar, F. Barthelat, R. Martini, “3D-Printing and Mechanics of Bio-Inspired Articulated and Multi-Material Structures”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 73, pp. 114-126, 2017.
[21] P. Phamduy, M.A. Vazquez, C. Kim, V. Mwaffo, A. Rizzo, M. Porfiri, “Design and Characterization of a Miniature Free-Swimming Robotic Fish Based on Multi-Material 3D Printing”, International Journal of Intelligent Robotics and Applications, Vol. 1, No. 2, pp. 209-223, 2017.
[22] L.G. Marques, R.A. Williams, W. Zhou, “A Mobile 3D Printer for Cooperative 3D Printing”, Solid Freeform Fabrication: Proceedings of the 28th Annual International, pp. 1645-1660, 2017.
[23] J. Steck, R. Morales-Ortega, J. Currence, W. Zhou, “A Mobile Robot Gripper for Cooperative 3D Printing”, Solid Freeform Fabrication: Proceedings of the 28th Annual International, pp. 2664-2681, 2017.
[24] S.K. Leist, D. Gao, R. Chiou, J. Zhou, “Investigating the Shape Memory Properties of 4D Printed Polylactic Acid (PLA) and the Concept of 4D Printing onto Nylon Fabrics for the Creation of Smart Textiles”, Virtual and Physical Prototyping, Vol. 12, No. 4, 2017.
[25] 謝弘進,“PLA-Cu複合材料應用於FDM 3D列印的物理性質研究”,國立台北科技大學碩士論文,2015。[26] 美國飼料穀物協會,“生物可分解塑膠技術資訊”,台北,美國飼料穀物協會,1999年。
[27] 黃俞方,“PLA及PMMA透明合膠增韌改質”,東海大學化學工程與材料工程學系碩士論文,2011。[28] R.A. Gross, B. Kalra, “Biodegradable Polymers for the Environment”, Science, Vol. 297, No. 5582, pp. 803-807, 2002.
[29] J. Lunt, “Polymer Degradation and Stability”, Vol. 59, pp.145-152, 1998.
[30] R.M. Rasal, A.V. Janorkar, D.E. Hirt, “Poly (lactic acid) modifications”, Progress in Polymer Science, Vol. 35, No. 3, pp. 338-356, 2010.
[31] S. Saeidlou, M.A. Huneault, H. Li, C.B. Park, “Poly (lactic acid) Crystallization”, Progress in Polymer Science, Vol. 37, No. 12, pp. 1657-1677, 2012.
[32] V. Francis, P.K. Jain, “Investigation on the Effect of Surface Modification of 3D Printed Parts by Nanoclay and Dimethyl Ketone”, Materials and Manufacturing Processes, pp. 1-13, 2017.
[33] M. Leite, A. Varanda, A.R. Ribeiro, A. Silva, M.F. Vaz, “Mechanical Properties and Water Absorption of Surface Modified ABS 3D Printed by Fused Deposition Modelling”, Rapid Prototyping Journal, Vol. 24, No. 1, 2017.
[34] B.E. Lozinski, “Anisotropy Evolution Due to Surface Treatment on 3D-Printed Fused Deposition Modeling (FDM) of Acrylonitrile Butadiene Styrene (ABS)”, Honors in the Major Theses, 269. University of Central Florida, 2017.
[35] V.A. Nelson, H. Reinecke, A. Gallardo, A. del Campo, R.H. Juan, “Fabrication of 3D Printed Objects with Controlled Surface Chemistry and Topography”, European Polymer Journal, Vol. 98, pp. 21-27, 2018.
[36] I.S. Cho, C.S. Lee, C.H. Choi, H.G. Lee, M.G. Lee, Y. Jeon, “Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM) on Bulk and 3D-Printed AISI H13 Tool Steels”, Metals, Vol. 7, No. 11, pp. 1-15, 2017.
[37] M. Adel, O. Abdelaal, A. Gad, A.B. Nasr, A. Khalil, “Polishing of Fused Deposition Modeling Products by Hot Air Jet: Evaluation of Surface Roughness”, Journal of Materials Processing Technology, Vol. 251, pp. 73-82, 2018.
[38] R. Singh, S. Singh, I.P. Singh, F. Fabbrocino, F. Fraternali, “Investigation for Surface Finish Improvement of FDM Parts by Vapor Smoothing Process”, Composites Part B: Engineering, Vol. 111, No. 15, pp. 228-234, 2017.
[39] G. Percoco, F. Lavecchia, L.M. Galantucci, “Compressive Properties of FDM Rapid Prototypes Treated with a Low-Cost Chemical Finishin”, Research Journal of Applied Sciences, Engieering and Technology, Vol. 4, No. 19, pp. 3838-3842, 2012.
[40] A. Garg, A. Bhattacharya, A. Batish, “On Surface Finish and Dimensional Accuracy of FDM Parts after Cold Vapor Treatment”, Materials and Manufacturing Processes, Vol. 31, No. 4, pp.522-529, 2016.
[41] C.C. Kuo, R.C. Mao, “Development of a Precision Surface Polishing System for Parts Fabricated by Fused Deposition Modeling”, Materials and Manufacturing Processes, Vol. 31, No. 8, pp. 1113-1118, 2016.
[42] J.S. Chohan, R. Singh, K.S. Boparai, “Parametric Optimization of Fused Deposition Modeling and Vapour Smoothing Processes for Surface Finishing of Biomedical Implant Replicas”, Measurement, Vol. 94, pp. 602-613, 2016.
[43] 丁志華、戴寶通,“田口實驗計畫簡介”,國家毫微米元件實驗室,毫微米通訊,第八卷,第三期,第7-11頁,2002。
[44] 李輝煌,“田口方法:品質設計的原理與實務",高立圖書有限公司出版,台北,2013。
[45] 劉岳彰,“3D列印熔融沉積成型品質最佳化設計",國立高雄應用科技大學機械工程研究所碩士論文,2016。[46] 陳銘源,“FDM快速成型機最佳參數因子組合之研究",國立勤益科技大學資訊管理系研發科技與資訊管理碩士論文,2016。[47] 蘇朝墩,“六標準差 Six Sigma",前程文化事業有限公司,台北縣,2009。
[48] 吳復強,“產品穩建設計:田口方法之原理與應用",全威圖書有限公司,台北,2005。
[49] 蘇朝墩,“品質工程",中華民國品質學會,台北,2002。
[50] 鄭燕琴,“田口品質工程技術理論與實務",中華民國品質學會,1995。