跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊銘
研究生(外文):LAM, CHUN-MING
論文名稱:接種叢枝菌根菌及汆燙對蕹菜 可食用部位重金屬化學型態之影響
論文名稱(外文):Effect of Inoculation with Arbuscular Mycorrhizal Fungi and Blanching on Heavy Metals Chemical Forms of Water Spinach (Ipomoea Aquatic Forsk.) Edible Parts
指導教授:邱凱瑩賴鴻裕賴鴻裕引用關係
指導教授(外文):CHIU, KAI-YINGLAI, HUNG-YU
口試委員:邱凱瑩賴鴻裕王進學
口試委員(外文):CHIU, KAI-YINGLAI, HUNG-YUWANG, CHING-HSUEH
口試日期:2018-01-25
學位類別:碩士
校院名稱:明道大學
系所名稱:精緻農業學系碩士班
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:叢枝菌根菌化學型態蕹菜
外文關鍵詞:Arbuscular Mycorrhizal FungiCadmiumChemical formNickelWater Spinach
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
植物對於重金屬的耐受性和解毒能力與化學型態有相關,本研究希望通過接種菌根菌改變蕹菜的生長表現及增加蕹菜中的磷濃度,藉此改變重金屬的化學型態減少蕹菜地上部對重金屬的累積,減少蕹菜受到重金屬的毒害,並以汆燙降低重金屬的生物可及性。試驗結果發現,接種菌根菌在鎘及鎳污染土壤能夠提升蕹菜的生長表現,並降低地上部鎳的累積,但地上部對鎘的累積則會增加。此外在蕹菜中鎘及鎳主要存在型態為無機型態,接種菌根菌會增加無機型態鎘百分比及降低無機型態鎳百分比。與未汆燙比較,汆燙處理能夠降低蕹菜中移動性較高的重金屬化學型態的濃度。綜合以上結果,接種菌根菌的蕹菜在鎘、鎳污染土壤中有較佳的生長表現,而且能降低鎳在可食用部位的累積,通過汆燙能降低鎘、鉻及鎳的生物可及性。
The tolerance and detoxification mechanisms of plants for heavy metals (HMs) are associated with chemical forms. Inoculation of arbuscular mycorrhizal fungi (AMF) could improve growth of water spinach, increase phosphorus (P) in plants which decrease accumulation of HMs in edible part and also decrease bioaccessibility of HMs by blanching. Experimental result showed that inoculation of AMF on water spinach could improve plant growth. It also decreased accumulation of nickel (Ni) but was opposite for cadmium (Cd). Inorganic form (FE) of cadmium and nickel are the major chemical form in water spinach. Blanching could decrease concentration of cadmium and nickel of the chemical form with high mobility in comparison to fresh tissues. In conclusion, AMF could improve plant growth in cadmium and nickel contaminated soil, decrease nickel accumulation in edible parts and bioaccessibility of Cd, chromium (Cr) and Ni by blanching.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 v
表目錄 vi
前言 (Introduction) 1
前人研究 (Literature Review) 5
一、重金屬對植物之影響 5
二、植物對重金屬的解毒機制 5
三、化學型態與植物對重金屬的保護機制之關係 6
四、磷對植物生理之影響 8
五、磷對於植物鎘的累積及運輸之影響 8
六、磷對於鎘在植物化學型態之影響 10
七、磷對於土壤之影響 11
八、接種菌根菌對植物及重金屬之影響 12
九、烹調處理對重金屬生物可及性之影響 13
材料與方法 (Materials and Methods) 16
試驗一、施用磷改變鎘的化學型態以降低蕹菜的累積濃度 16
試驗二、接種菌根菌及汆燙對蕹菜可食用部位重金屬化學型態之影響 19
結果 (Results) 24
試驗一、施用磷改變鎘的化學型態以降低蕹菜的累積濃度 24
試驗二、接種菌根菌及汆燙對蕹菜可食用部位重金屬化學型態之影響 27
討論 (Discussion) 31
試驗一、施用磷改變鎘的化學型態以降低蕹菜的累積濃度 31
試驗二、接種菌根菌及汆燙對蕹菜可食用部位重金屬化學型態之影響 33
磷的栽培管理對降低重金屬累積濃度及生物可及性之影響 37
結論 (Conclusion) 39
參考文獻 (References) 40
圖目錄 47
表目錄 44

黃藝、陳有鍵和陶澍。2000。菌根植物根際對污染土壤中Cu、Zn、Pb、Cd型態的影響。應用生態學報。11:431-434。
Abbott L. K. and A. D. Robson. 1977. Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas. Aust. J. Agric. Res. 28:639-649.
Afonso C., S. Costa, C. Cardoso, R. Oliveira, H. M. Lourenço and A. Viula. 2015. Benefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercury. Environ. Res. 143:130-137.
Aghababaei F., F. Raiesi and A. Hosseinpur. 2014. The combined effects of earthworms and arbuscular mycorrhizal fungi on microbial biomass and enzyme activities in a calcareous soil spiked with cadmium Fatemeh. Appl. Soil Ecol. 75:33-42.
Ahmed F. R. S., K. Killham and I. Alexander. 2006. Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 258:33-41.
Akhtar O., R. Mishra and H. K. Kehri. 2016. Arbuscular mycorrhizal association contributes to Cr accumulation and tolerance in plants growing on Cr contaminated soils. Proc. Natl. Acad. Sci. India. Sect. B Biol. Sci. 6:1-8.
Arias M. S. B., J. J. Peña-Cabriales, A. Alarcón and M. M. Vega. 2015. Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium. Int. J. Phytoremediat. 17:405-413.
Bolan N. S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189-207.
Bozhinova R. 2016. Heavy metal concentrations in soil and tobacco plants following long-term phosphorus fertilization. Bulg. J. Argic. Sci. 22:16-20.
Bray, R.H. and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59: 39–45.
Caussy D., M. Gochfeld, E. Gurzau, C. Neagu and H. Ruedele. 2003. Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicol. Environ. Saf. 56:164-173.
Chen B. C. and H. Y. Lai. 2016. Subcellular distribution of cadmium in two paddy rice varieties with different cooking methods. Agric. Sci. 7:383-395.
Clemens, S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88:1707-1719.
Cobbett C. S. 2000. Phytochelatins and Their Roles in Heavy Metal Detoxification. Plant Physiol. 123:825-832.
Du J. N., C. L. Yan, and Z.D. Li. 2014. Phosphorus and cadmium interactions in Kadeliaobovata (S. L.) in relation to cadmium tolerance. Environ. Sci. Pollut. R. 21:355-365.
EPA/Taiwan. 2015. Method code No: NIEA S321.64B. Environmental Protection. Administration of Taiwan ROC. Taipei. Taiwan.
Fernández R., Fernández-Fuego D., Bertrand A. and González A. 2014. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids. Plant Physiol. Biochem. 78:63-70.
Fujimori T., M. Taniguchi, T. Agusa, K. Shiota, M. Takaoka, A. Yoshida, A. Terazono, F. C. B. Jr. and H. Takigami. 2018. Effect of lead speciation on its oral bioaccessibility in surface dust and soil of electronic-wastes recycling sites. J. Hazard. Mater. 341:365-372.
Gardea-Torresdey J. L., J.R. Peralta-Videaa, M. Montesb, G. de la Rosaa and B. Corral-Diaz. 2004. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour. Technol. 92:229-235.
Gaur A, Adholeya A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci. 86:528–538.
Ge, W., Y.Q. Jiao, B.L. Sun, R. Qin, W.S. Jiang, and D.H. Liu. 2012. Cadmium-mediated oxidative stress and ultrastructural changes in root cells of poplar cultivars. S. Afr. J. Bot. 83:98-108.
Gee G.W. and J. W. Bauder. 1986. Particle-size analysis. In: A. Klute, G. S. Campbell, R. D. Jackson, M. M. Mortland, D. R. Nielsen. (Eds.), Methods of Soil Analysis, Part1. Physical and Mineralogical Methods. 2nd edn. SSSA Inc. and ASA Inc., Madison. WI. USA. 383-412.
Horner N. S. and D. Beauchemin. 2013. The effect of cooking and washing rice on the bio-accessibility of As, Cu, Fe, V and Zn using an on-line continuous leaching method. Anal. Chem. Acta. 758:28-35.
Jiang H.M., J.C. Yang and J.F. Zhang. 2007. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ. Pollut. 147:750-756.
John R., P. Ahmad, K. Gadgil, S. S harma. 2009. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 3:65-76.
Joner, E. J. and C. Leyval. 1997. Uptake of Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol. 135:353-360.
Jones J. B. and V.W. Case. 1990. Sampling, handling and analyzing plant tissue samples. In: R. L. Westerman. (Ed.). Soil Testing and Plant Analysis. 3rd ed. SSSA Inc. Madison. WI. USA. 389–427.
Juhasza A. L. , E. Smitha, J. Webera, M. Reesb, A. Rofeb, T. Kuchelb, L. Sansomc and R. Naidu. 2007. .In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere 69:961-966.
Kartel M. T., L. A. Kupchik and B. K. Veisov. 1999. Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere.38:2591–2596.
Krzesłowska M. 2011. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta. Physiol. Plant. 33:35–51.
Lai H.Y. 2015. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere 138:370-376.
Li H.B., J. Li, A. L. Juhasz and L. Q. Ma. 2014. Correlation of in vivo relative bioavailability to in vitro bioaccessibility for arsenic in household dust from China and its implication for human exposure assessment. Environ. Sci. Technol. 48:13652-13659.
Mehlich A. 1984. Mehlich III soil test extractant: a modification of Mehlich II extractant. Commun. Soil Sci. Plant Anal. 15:1409–1416.
Mengel K. and E. A. Kirkby. EA 2001. Principles of plant nutrition. 5th edn. Springer Sciences. Berlin.
Nelson D.W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: D.L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston and M. E. Sumner. (Eds.). Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Inc. and ASA Inc. Madison WI. USA. 961–1010.
Oliveira H. 2012. Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. J. Bot. 2012: 375843.
Olsen S, C. Cole, F. Watanabe and L. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939 US Gov. Print Office Washington. D. C.
Phillips J. M. and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55:158-161.
Qiu Q, Y.T. Wang, Z.Y. Yang and J.G. Yuan. 2011. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem. Toxicol. 49:2260-2267.
Ousséni O. and M. Amyot. 2011. Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environ. Res. 111:1064-1069.
Raicevic S., V. Perovic and A. L. Zoubulis. 2009. Theoretical assessment of phosphate amendments for stabilization of (Pb + Zn) in polluted soil. Waste Manage 29:1779-1784.
Ren, A., Y. Gao, L. Zhang, and F. Xie. 2006. Effects of cadmium on growth parameters of endophyte-inflected and endophyte-free ryegrass. J. Plant Nutr. Soil Sci. 169: 857-860.
Rhoades J. D. 1996. Salinity: electrical conductivity and total dissolved solids. In: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston and M. E. Sumner. (Eds.) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Inc. and ASA Inc. Madison. WI. USA. 417. 417–135.
Shahabivand S., H. Z. Mavian, E. M. Goltapeh, M. Sharifi and A. A. Aliloo. 2012. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol. Biochem. 60:53-58.
Shi G., and Q. Cai. 2009. Leaf plasticity in peanut (Arachis hypogaea L.) in response to heavy metal stress. Environ. Exp. Bot. 67:112-117.
Smith S, and D. Read. 2008. Mycorrhizal symbiosis. 3rd ed. London (UK): Academic Press. p. 11-145.
Tabrizi L., S. Monhammadi, M., Delshad, and B. M. Zadeh. 2015. Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot marigold (Calendula officinalis L.) under heavy metals stress. Int. J. Phytoremediat. 17:1244-1252.
Tessier A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 52:844-851.
Thomas. G.W. 1996. Soil pH and soil acidity. In: D. L. Sparks. A. L. Page. P. A. Helmke. R. H. Loeppert. P. N. Soltanpour. M. A. Tabatabai. C. T. Johnston And Sumner. M. E. (Eds.). Methods of Soil Analysis. Part3. Chemical Methods. SSSA Inc. and ASA Inc. Madison. WI. USA. 475-490.
Ueno D., J. F. Ma, T. Iwashita, F. J. Zhao and S. P. McGrath. 2005. Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta .221:928-936.
Vázquez, S., Goldsbrough, P. and R. O. Carpena. 2006. Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol. Plant. 128:487-495.
Velázqueza M. S., M. N. Cabelloa, L. A. Elíadesa, M. L. Russoa and N. A. y S. Schalamukc. 2017. Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.). Rev. Argent Microbiol. 49:347-355.
Xin J.L., B. F. Huang, Z. Y. Yang, J.G. Yuan and Y.D. Zhang. 2013. Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatic Forsk.) cultivars. Plant Soil. 372:431-444.
Yao Q., R. H. Yang, L. K. Long and H. H. Zhu. 2014. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae. Environ. Exp. Bot. 108:63-70.
Yin A., Z. Yang, S. Ebbs, J.G. Yuan, J. B. Wang and J.Z. Yang. 2016. Effects of phosphorus on chemical forms of Cd in plants of four spinach (Spinaciaoleracea L.) cultivars differing in Cd accumulation. Environ. Sci. Pollut. R. 6:5753-5762.
Zayed A., C. M. Lytle, J. H. Qian and N. Terry. 1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta. 206:293-299.
Zhou J. L. 1999. Zn biosorption by rhizopus arrhizusand other fungi. 51:686-693.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊