跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王霈盈
研究生(外文):WANG,PEI-YING
論文名稱:製備中孔碳/氧化石墨烯及其對染料吸附之研究
論文名稱(外文):Study On The Synthesis Qf Mesoporous Carbon/Graphene Oxide For Adsorption Of Dyes
指導教授:劉宗宏劉宗宏引用關係
指導教授(外文):LIOU,TZONG-HORNG
口試委員:郭茂穗歐俊堯
口試委員(外文):KUO,MAW-SUEYOU,CHUN-YAO
口試日期:2017-09-15
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:矽酸鈉石墨烯活性碳CMK-3/GO亞甲基藍
外文關鍵詞:sodium silicate,grapheneactivated carbonCMK-3/GOmethylene blue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究是使用農業廢棄物作為矽源製備SBA-15/GO,並利用SBA-15/GO作為模板加入蔗糖為碳前驅物合成CMK-3/GO,且使用萃取後之稻殼碳以含浸法製備成活性碳,製備完成後再對亞甲基藍進行吸附實驗。將製備之CMK-3、CMK-3/GO、RHC、RHACP、RHACZn、RHACP/GO及RHACZn/GO以XRD、SEM、TEM、BET、FTIR及Raman進行材料的特徵分析。最後利用此材料進行亞甲基藍染料的吸附實驗,以探討不同實驗變數,如:初始濃度、溫度及吸附劑的影響,並利用等溫吸附模式及吸附動力學探討其吸附能力。
由TEM圖中可以發現CMK-3及CMK-3/GO具有六角對稱且有序的排列孔道。BET分析結果得知CMK-3及CMK-3/GO皆呈現大小均勻之中孔洞結構,以及type IV的中孔洞吸脫附曲線。CMK-3及CMK-3/GO的比表面積、平均孔徑及孔體積分別為1120 m2/g、3.8 nm、0.991 m3/g,936 m2/g、4.9 nm、1.077 m3/g。在吸附實驗上CMK-3及CMK-3/GO對亞甲基藍溶液的吸附行為皆符合Langmuir等溫吸附模式及擬二階動力學模式,且兩者的最大吸附量分別為1220 mg/g、1217 mg/g。
由XRD圖發現所有活性碳材在20°~30°及40°顯示出特徵峰,其繞射晶面分別為(002)及(100),表示樣品具有不規則堆疊的碳,且有微結晶石墨結構。SEM圖觀察出活化後之RHACP、RHACP/GO、 RHACZn及RHACZn/GO的孔洞變多且顆粒變小。而RHC活化並嫁接GO後,對亞甲基藍溶液的吸附量皆提高。且RHACP/GO及RHACZn/GO,具較高的親和力,能有較高的吸附效率。

In this study, SBA-15/GO was prepared from agricultural waste. Then, CMK-3/GO was synthesized using SBA-15/GO and sucrose. Activated carbon was prepared from rice husk using impregnation method. The physical and chemical properties of CMK-3, CMK-3/GO, RHC, RHACP, RHACZn, RHACP/GO and RHACZn/GO were examined by XRD, SEM, TEM, BET, FTIR and Raman. The effects of initial concentration, temperature and adsorbent on the adsorption of methylene blue were investigated.
The TEM images showed that CMK-3 and CMK-3/GO had hexagonal and aligned channels. The results of the BET analysis showed that CMK-3 and CMK-3/GO revealed a uniform pore size. The adsorption and desorption curves showed characteristics of type IV with mesostructure. The surface area, average pore size and pore volume of CMK-3 were 1120 m2/g, 3.8 nm and 0.991 m3/g. The surface area, average pore size and pore volume of CMK-3/GO were 936 m2/g, 4.9 nm and 1.077 m3/g. The adsorption behavior of methylene blue on CMK-3 and CMK-3/GO was consistent with Langmuir isothermal model and quasi-second order kinetic model.
The XRD pattern showed that the activated carbon material exhibited characteristic peaks at 20 ° ~ 30 ° and 40 °. The diffraction planes were (002) and (100). After grafting with GO, the adsorption capacity of methylene blue solution was improved. RHACP/GO and RHACZn/GO, with a high affinity, could have a higher adsorption efficiency.

目錄
指導教授推薦書.........................................................................................i
口試委員審定書.........................................................................................ii
誌謝...........................................................................................................iii
中文摘要...................................................................................................iv
Abstract.....................................................................................................v
目錄...........................................................................................................vi
圖目錄.......................................................................................................x
表目錄.......................................................................................................xiii
第一章 前言...............................................................................................1
1.1 研究動機.............................................................................................1
1.2 研究項目.............................................................................................2
第二章 文獻回顧.......................................................................................3
2.1 稻殼....................................................................................................3
2.1.1 稻殼之再利用技術............................................................................3
2.2 多孔材料.............................................................................................5
2.2.1 SBA-15............................................................................................5
2.2.2 不同矽源之SBA-15合成...................................................................7
2.2.3 SBA-15之應用.................................................................................8
2.2.4 中孔碳.............................................................................................9
2.2.5 不同碳源之中孔碳合成...................................................................10
2.2.6 中孔碳之應用.................................................................................10
2.2.7 活性碳............................................................................................11
2.2.8 不同農業廢棄物製成之活性碳........................................................12
2.3 中孔碳材合成機制.............................................................................13
2.4 石墨烯與氧化石墨烯.........................................................................15
2.4.1 石墨烯與氧化石墨烯......................................................................15
2.4.2 氧化石墨烯中孔碳複合材料...........................................................16
2.4.3 氧化石墨烯其他複合材料...............................................................16
2.5 亞甲基藍...........................................................................................17
2.5.1 亞甲基藍之應用.............................................................................17
2.6 吸附理論...........................................................................................18
2.6.1 物理吸附........................................................................................19
2.6.2 化學吸附........................................................................................19
2.7 等溫吸附理論....................................................................................19
2.8 動力學吸附理論.................................................................................21
第三章 實驗方法與設備...........................................................................24
3.1 實驗藥品............................................................................................24
3.2 實驗設備與分析儀器..........................................................................25
3.3 製備矽酸鈉溶液.................................................................................26
3.4 製備SBA-15/GO................................................................................28
3.5 製備CMK-3/GO.................................................................................30
3.6 製備活性碳........................................................................................32
3.6.1 製備稻殼碳.....................................................................................32
3.6.2 磷酸活化法.....................................................................................32
3.6.3 氯化鋅活化法.................................................................................33
3.7 製備活性碳/GO.................................................................................35
3.7.1 RHACP/GO...................................................................................35
3.7.2 RHACZn/GO.................................................................................35
3.8 中孔洞氧化矽及中孔洞碳材料性質分析方法.....................................37
3.8.1 X光繞射儀.....................................................................................37
3.8.2 場發式電子顯微鏡.........................................................................38
3.8.3 穿透式電子顯微鏡.........................................................................38
3.8.4 比表面積分析儀............................................................................38
3.8.5 拉曼光譜儀....................................................................................40
3.9 中孔碳材吸附甲基藍之吸附實驗......................................................41
3.9.1 等溫吸附實驗................................................................................41
3.9.2 不同初始濃度之吸附實驗..............................................................42
3.9.3 不同溫度之吸附實驗.....................................................................43
3.9.4 不同吸附劑之吸附實驗.................................................................44
第四章 實驗結果與討論.........................................................................45
4.1 中孔洞二氧化矽、中孔碳及活性碳之材料性質分析.........................45
4.1.1 X光繞射儀(XRD)之探討................................................................45
4.1.2 電子顯微鏡(SEM)之探討...............................................................48
4.1.3 穿透式電子顯微鏡(TEM)之探討....................................................51
4.1.4 傅立葉紅外線光譜儀(FT-IR)之探討...............................................55
4.1.5 比表面積分析儀(BET)之探討........................................................57
4.1.6 拉曼光譜儀(Raman spectrum)之探討...........................................62
4.2 中孔碳材料對亞甲基藍之吸附分析..................................................65
4.2.1 不同初始濃度的亞甲基藍對時間之吸附實驗.................................66
4.2.2 不同溫度下對亞甲基藍之吸附實驗...............................................68
4.2.3 不同吸附劑對亞甲基藍之吸附實驗...............................................70
4.2.4 等溫吸附實驗................................................................................73
4.2.5 動力學吸附實驗............................................................................76
第五章 結論...........................................................................................81
參考文獻...............................................................................................83

圖目錄
圖2-1 稻殼在不同的工業領域中的應用..................................................3
圖2-2 多孔材料之分類...........................................................................5
圖2-3 中孔矽鋁酸鹽材料之合成.............................................................6
圖2-4 以SBA-15作為模板合成CMK-3之示意圖.....................................9
圖2-5 以液相浸漬法製備中孔碳材........................................................17
圖2-6 甲基藍之結構圖..........................................................................17
圖2-7 亞甲基藍之吸收光譜...................................................................17
圖3-1 矽酸鈉溶液之製備流程圖............................................................27
圖3-2 SBA-15/GO之製備流程圖...........................................................29
圖3-3 CMK-3/GO之製備流程圖............................................................31
圖3-4 活性碳之製備流程圖...................................................................34
圖3-5 活性碳/GO之製備流程圖............................................................36
圖3-6 Bragg 's X光繞射示意圖.............................................................37
圖3-7 等溫吸附實驗之流程圖...............................................................41
圖3-8 不同初始濃度之吸附實驗流程圖.................................................42
圖3-9 不同溫度之吸附實驗流程圖........................................................43
圖3-10 不同吸附劑之吸附實驗流程圖..................................................44
圖4-1 SBA-15/GO及CMK-3/GO之XRD圖...........................................45
圖4-2 CMK-3及CMK-3/GO之XRD圖...................................................46
圖4-3 不同活化方法所製備的活性碳之XRD圖.....................................47
圖4-4 CMK-3之SEM圖:(A)5000X,(B)10000X.................................48
圖4-5 CMK-3/GO之SEM圖:(A)5000X,(B)10000X..........................48
圖4-6 CMK-3/GO之SEM圖:(A)5000X,(B)10000X..........................49
圖4-7 RHC之SEM圖:(A)50000X,(B)10000X..................................49
圖4-8 RHACP之SEM圖:(A)50000X,(B)10000X.............................49
圖4-9 RHACP/GO之SEM圖:(A)50000X,(B)10000X.......................50
圖4-10 RHACZn之SEM圖:(A)50000X,(B)10000X..........................50
圖4-11 RHACZn/GO之SEM圖:(A)50000X,(B)10000X...................50
圖4-12 去除灰分的RHC之TEM圖........................................................51
圖4-13 CMK-3之TEM圖:80000X......................................................52
圖4-14 CMK-3之TEM圖:50000X......................................................52
圖4-15 CMK-3之TEM圖:60000X......................................................53
圖4-16 CMK-3/GO之TEM圖:50000X................................................53
圖4-17 CMK-3/GO之TEM圖:50000X................................................54
圖4-18 CMK-3/GO之TEM圖:40000X................................................54
圖4-19 稻殼碳及中孔碳材料之FT-IR圖譜............................................55
圖4-20 稻殼碳及活性碳材料之FT-IR圖譜............................................56
圖4-21 SBA-15/GO及CMK-3/GO之氮氣吸脫附曲線圖.......................58
圖4-22 CMK-3及CMK-3/GO之氮氣吸脫附曲線圖...............................58
圖4-23 RHACP/GO及RHACZn/GO之氮氣吸脫附曲線圖....................59
圖4-24 SBA-15/GO及CMK-3/GO的孔徑分佈圖..................................60
圖4-25 CMK-3及CMK-3/GO的孔徑分佈圖..........................................61
圖4-26 RHACP/GO及RHACZn/GO的孔徑分佈圖...............................61
圖4-27中孔碳材之拉曼光譜圖.............................................................62
圖4-28活性碳材之拉曼光譜圖..............................................................63
圖4-29 50 ppm亞甲基藍溶液的UV圖譜................................................65
圖4-30 亞甲基藍溶液的檢量線.............................................................65
圖4-31 CMK-3於不同初始濃度下對亞甲基藍之吸附實驗.....................67
圖4-32 CMK-3/GO於不同初始濃度下對亞甲基藍之吸附實驗..............67
圖4-33 CMK-3於不同溫度下對50 ppm亞甲基藍之吸附實驗................68
圖4-34 CMK-3/GO於不同溫度下50 ppm對亞甲基藍之吸附實驗..........69
圖4-35 RHC、CMK-3、CMK-3/GO對50 ppm亞甲基藍之吸附實驗.....70
圖4-36 RHC、RHACP、RHACP/GO對50 ppm亞甲基藍之吸附實驗..71
圖4-37 RHC、RHACZn、RHACZn/GO對50 ppm亞甲基藍之吸附實驗72
圖4-38 CMK-3之 Langmuir等溫吸附分析圖.........................................74
圖4-39 CMK-3之 Freundlich等溫吸附分析圖.......................................74
圖4-40 CMK-3/GO之 Langmuir等溫吸附分析圖..................................75
圖4-41 CMK-3/GO之 Freundlich等溫吸附分析圖................................75
圖4-42 CMK-3擬一階動力學圖............................................................77
圖4-43 CMK-3/GO擬一階動力學分析圖..............................................77
圖4-44 CMK-3擬二階動力學分析圖....................................................78
圖4-45 CMK-3/GO擬二階動力學分析圖.............................................78
圖4-46 CMK-3內部擴散分析圖...........................................................79
圖4-47 CMK-3/GO內部擴散分析圖....................................................80

表目錄
表2-1 不同矽源合成的SBA系列之比較...............................................6
表2-2 各種廢棄物所製備之活性碳......................................................11
表2-3 不同碳源以液相浸漬法製備CMK-3...........................................14
表4-1 樣品結構特性分析結果..............................................................57
表4-2 中孔碳材之拉曼特徵變化..........................................................63
表4-3 活性碳材之拉曼特徵變化..........................................................64
表4-4 CMK-3與CMK-3/GO之Langmuir等溫吸附相關數據.................73
表4-5 CMK-3與CMK-3/GO之Freundlich等溫吸附相關數據...............73
表4-6 擬一階動力學相關數據............................................................76
表4-7 擬二階動力學相關數據............................................................76
表4-8 內部擴散模式相關數據............................................................79


[1]楊紹榮,行政院農委會臺南區農業改良場,農業廢棄物處理與利用。
[2]M. Deng,G. Zhang,Y. Zeng,X. Pei,R. Huang,J. Lin,“ Simple process for synthesis of layered sodium silicates using rice husk ash as silica source ” ,Journal of Alloys and Compounds,2016,683,412-417。
[3]D. Robati,S. Bagheriyan,M. Rajabi,O. Moradi,A.A. Peyghan,“ Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes ”,Physica E: Low-dimensional Systems and Nanostructures ,2016,1-6。
[4]G.K. Ramesha,A.V. Kmara,H.B. Muralidhara,S. Sampath,“ Graphene and grapheme oxide as effective adsorbents toward anionic and cation dyes ” , Journal of Colloid and Interface Science,2011,361,270-277。
[5]倪禮豐,稻殼再利用技術,花蓮區農業專訊 61,19-20。
[6]N. Soltani,A. Bahrami,M.I. Pech-Canul,L.A. Gonzalez,“ Review on the physicochemical treatments of rice husk for production of advanced materials ” , Chemical Engineering Journal,2015,264,899-935。
[7]R. Siddique,K. Singh,Kunal,M. Singh,V. Corinaldesi,A. Rajor,“ Properties of bacterial rice husk ash concrete ”,Construction and Building Materials,2016,121,112-119。
[8]A. Al-Hdabi,“ Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler ”,Construction and Building Materials,2016,126,544-551。
[9]F. Adama,J. N. Appaturi,Z. Khanam,R. Thankappan,Mohd. Asri Mohd Nawi,“ Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium ” ,Applied Surface Science,2013,264,718-726。
[10]Gehan M.K. Tolba,Nasser A.M. Barakat,A.M. Bastaweesy,E.A. Ashour,W. Abdelmoez,Mohamed H. El-Newehy,Salem S. Al-Deyab,Hak Yong Kim,“ Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes ”,Journal of Industrial and Engineering Chemistry,2015,29,134-145。
[11]C.T. Kresge,M.E. Leonowicz,W.J. Roth,J.C. Vartuli,J.S. Beck,“ Ordered mesoporous molecular sieves synthesized by a liquid-crystal templ mechanism ” ,Nature ,1992,359,710-712。
[12]D. Zhao,J. Feng,Q. Huo,N. Melosh,G. H. Fredrickson,B.F. Chmelka,G.D. Stucky,“ Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores ” ,Science,1998,279,548-552。
[13]李佳錡,以TFT-LCD 廠粉末廢棄物資源化合成中孔洞材料及其二氧化碳氣體捕獲之研究,國立交通大學環境工程研究所,2011。
[14]D.R. Sahu,L.Y. Hong,Sheng-Chang Wang,Jow-Lay Huang,“ Synthesis, analysis and characterization of ordered mesoporous TiO2/SBA-15 matrix: Effect of calcination temperature ” ,Microporous and Mesoporous Materials,2009,117,640-649。
[15]M. Bhagiyalakshmi,Lee-Ji Yun,R. Anuradha,Hyun-Tae Jang,“ Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting ” ,Journal of Hazardous Materials,2010,175,928-938。
[16]Y. Ding,G. Yin,X. Liao,Z. Huang,X. Chen,Y. Yao,“ Key role of sodium silicate modulus in synthesis of mesoporous silica SBA-15 rods with controllable lengths and diameters ” ,Materials Letters,2012,75,45-47。
[17]P. F. Fulvio,S. Pikus,M. Jaroniec,“ Short-time synthesis of SBA-15 using various silica sources ” ,Journal of Colloid and Interface Science,2005,287,717-720。
[18]A.E.B. Cruza,J.A.M. Banda,H. Mendoza,C.E. Ramos-Galvan,M.A.M. Melo,D. Esquivel,“ Pt and Ni supported catalysts on SBA-15 and SBA-16 for the synthesis of biodiesel ”,Catalysis Today,2011,166,111-115。
[19]G. Gomez,J. A. Botas,D. P. Serrano,P. Pizarro,“ Hydrogen production by methane decomposition over pure silicaSBA-15 materials ”,Catalysis Today, 2016,277,152-160。
[20]Q. Gao,Jin-Feng Xie,Ya-Ting Shao,C. Chen,B.Han,Kai-Sheng Xia,Cheng-Gang Zhou,“ Ultrafast and high-capacity adsorption of Gd(III) onto inorganic phosphorous acid modified mesoporous SBA-15 ”,Chemical Engineering Journal,2017,313,197-206。
[21]J. He,K. Ma,J. Jin,Z. Dong,J. Wang,R. Li,“ Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption ” ,Microporous and Mesoporous Materials,2009,121,173。
[22]K.S. Lakhi,W.S. Cha,J.H. Choy,M.A. Ejji,A.M. Abdullah,A.M.A. Enizi,A. Vinu,“ Synthesis of mesoporous carbons with controlled morphology and pore diameters from SBA-15 prepared through the microwaveassisted process and their CO2 adsorption capacity ”,Microporous and Mesoporous Materials ,2016,233,44-52。
[23]F. Liu,Z. Guo,H. Ling,Z. Huang,D. Tang,“ Effect of pore structure on the adsorption of aqueous dyes to ordered mesoporous carbons ” ,Microporous and Mesoporous Materials,2016,227,104-111。
[24]V. Celorrio,D. Sebastian,L. Calvillo,A.B. Garc,D.J. Fermin,M.J. Lazaro,“ Influence of thermal treatments on the stability of Pd nanoparticles supported on graphitised ordered mesoporous carbons ”,International Journal of Hydrogen Energy,2016,41,19570-19578。
[25]Y. Liu,Q. Li,X. Cao,Y. Wang,X. Jiang,M. Li,M. Hua,Z. Zhang,“Removal of uranium(VI) from aqueous solutions by CMK-3 and itspolymer composite ” ,Applied Surface Science,2013,285,258-266。
[26]K. S. Lakhi,W. S. Cha,Jin-Ho Choy,M. Al-Ejji,A. M. Abdullah,A. M. Al-Enizi,A. Vinu,“ Synthesis of mesoporous carbons with controlled morphology and pore diameters from SBA-15 prepared through the microwaveassisted process and their CO2 adsorption capacity ”,Microporous and Mesoporous Materials,2016,233, 44-52。
[27]M. Lashgari,Hian-Kee Lee,“ Introducing surface-modified ordered mesoporous carbon as a promising sorbent for extraction of N-nitrosamines ” ,Journal of Colloid and Interface Science,2016,481,39-46。
[28]L. Lin,S.R. Zhai,Z.Y. Xiao,Y. Song,Q.D. An,X.W. Song,“ Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks ” ,Bioresource Technology,2013,136,437-443。
[29]T. Mahmood,R. Ali,A. Naeem,M. Hamayun,M. Aslam,“ Potential of used Camellia sinensis leaves asprecursor for activated carbon preparation bychemical activation with H3PO4; optimizationusing response surface methodology ”,Process Safety and Environmental Protection,2017,109,548-563。
[30]M.L. Botomé,P. Poletto,J. Junges,D. Perondi,A. Dettmer,M. Godinho,“ Preparation and characterization of a metal-rich activated carbon from CCA-treated wood for CO2 capture ” ,Chemical Engineering Journal ,2017,321,614-621。
[31]宋懷河,李麗霞,陳曉紅,有序介孔碳的模板合成進展,New Carbon Materials,第4期,第21卷,2006年,374-383。
[32]郭書宏,製備氧化鈣/中孔碳材吸附劑應用於二氧化碳捕獲,國立高雄應用科技大學,2014。
[33]楊旭宇,王賢保,李搖靜,楊搖佳,萬搖麗,王敬超,氧化石墨烯的可控還原及結構表徵,Chemical Journal of Chinese Universities,2012,1902-1907。
[34]F. Li,X. Jiang,J. Zhao,S. Zhang,“ Graphene oxide: A promising nanomaterial for energy and environmental applications ” , Nano Energy ,2015,488-515。
[35]J. Tang,T. Wang,X. Sun,Y. Hu,Q. Xie,Y. Guo,H. Xue,J. He,“ Novel synthesis of reduced graphene oxide-ordered mesoporous carbon composites and their application in electrocatalysis ” ,Electrochimica Acta,2013,90,53-62。
[36]P. Zong,S. Wang,Y. Zhao,H. Wang,H. Pan,C. He,“ Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions ” ,Chemical Engineering Journal,2013,220,45-52。
[37]N. Saeidi,M. Parvini,Z. Niavarani,“ High surface area and mesoporous graphene/activated carbon composite for adsorption of Pb(II) from wastewater ” ,Journal of Environmental Chemical Engineering,2015,3,2697-2706。
[38]杜佳瑾,廢棄蛋殼對水溶液中亞甲基藍染料之吸附特性研究,國立屏東科技大學研究所,2011,10-11。
[39]孫麗,一種用亞甲基藍治療魚體水霉病的方法,CN102228010A,2011年11月2日。
[40]黃仲正,吳秉峰,認識甲基藍-農藥急性中毒解毒劑,台中慈濟藥訊,2011年10月。
[41]施惠娟,王健,袁瑤,王會,賈曉峰,徐彥,華葉,王鵬,流暢,劉淼,吳青,亞甲基藍的新用途,CN103385879,2013年11月13日。
[42]K.E. Noll,“Adsorption technology for air and water pollution contror ” , Lewis publishers,1992。
[43]蔡正國,複合奈米碳管吸附水溶重金屬污染物之應用研究,國立雲林科技大學環境與安全衛生工程研究所,2005。
[44]M.Y. Chang,R.S. Juang,“ Adsorption of tannic acid , humic acid , and dyes from water using the composite of chitosan and activated clay ” ,Journal of Colloid and Interface Science,2004,278,18。
[45]T. Gotoh,K. Matsushima,KL Kikuchi,“ Preparation of alginate - chitosan hybrid gel beads and adsorption of divalent metal ions ” ,Chemosphere,2004,55,135。
[46]Y.S. Ho,G. Mckay,“ A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents ” ,Chemical Engineering Research & Design,1998,76,332。
[47]L. Zhoua,Y. Wang,Z. Liu,Q. Huang,“ Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II),and Ni(II) ions thiourea-modified magnetic chitosan microspheres ” ,Journal of Hazardous Materials,2009,161,995-1002。
[48]V.C. Srivastava,I.D. Mall,I. M. Mishra,“ Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA ” ,Journal of Hazardous Materials,2006,B134,257-267。
[49]L.E. Smart and E.A. Moore,Solid State Chemistry,3rd edition,2005。
[50]馬振基,奈米材料科技原理與應用,全華出版社,2003。
[51]許鴻升,以高分子聚合物模擬土壤有機質特定官能基對氣態有機汙染物吸附行為之影響,國立中央大學環境工程研究所,2003。
[52]陳怡君,以不同海膽狀碳材製備鉑-釕觸媒用於電催化甲醇氣化反應,國立成功大學化學工程研究所,2009。
[53]A. Vinu,P. Srinivasu,M. Takahashi,T. Mori,V.V. Balasubramanian,K. Ariga,“ Controlling the textural parameters of mesoporous carbon materials ” ,Microporous and Mesoporous Materials,2007,100,20-26。
[54]L. Muniandy,F. Adam,A. R. Mohamed,Eng-Poh Ng,“ The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH ” ,Microporous and Mesoporous Materials,2014,197,316-323。
[55]X. Wang,S. Wu,Z. Li,X. Yang,H. Su,J. Hu,Q. Huo,J. Guan,Q. Kan,“ Cu(II), Co(II), Fe(III) or VO(II) Schiff base complexes immobilized onto CMK-3 for styrene epoxidation ” ,Microporous and Mesoporous Materials,2016,221,58-66。
[56]X. Peng,D. Huang,T. Odoom-Wubah,D. Fu,J. Huang,Q. Qin,“ Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: Equilibrium,thermodynamic and kinetics ” ,Journal of Colloid and Interface Science,2014,430,272-282。
[57]黃凱,李一飛,焦樹強,朱鴻民,檸檬酸活化赤泥對亞甲基藍染料廢水的吸附淨化作用,中國有色金屬學報,第21卷,第21期,2011年12月。
[58]唐艷茹,丁鵬,成寶海,張敏,常超,功能化石墨烯對亞甲基藍的吸附性能,武漢工程大學學報,第33卷,第7期,2011年07月。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top