跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉元皓
研究生(外文):LIOU,YUAN-HAO
論文名稱:利用稻殼製備SBA-15/氧化石墨烯探討對染料吸附之影響
論文名稱(外文):Synthesis of SBA-15/Graphene Oxide from Rice Husk and its Effect on the Adsorption of Dyes
指導教授:劉宗宏劉宗宏引用關係
指導教授(外文):Liuo, Tzong-Horng
口試委員:歐俊堯郭茂穗
口試委員(外文):Ou, Chun-YaoKuo, Maw-Suey
口試日期:2017-09-15
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:74
中文關鍵詞:SBA-15/GO稻殼矽酸鈉亞甲基藍
外文關鍵詞:SBA-15/GOrice husksilicon sodiummethylene blue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用稻殼進行萃取矽源合成SBA-15,並探討改變合成環境、矽的用量及嫁接的氧化石墨烯(GO)量,對於SBA-15的結構之變化與其對亞甲基藍吸附之能力分析。將本研究中製備的SBA-15與SBA-15/GO用XRD、FTIR、TEM、SEM、BET、Raman進行材料特性分析。吸附實驗則在不同條件下進行吸附實驗,並利用等溫吸附及動力學吸附模式加以探討。 由XRD圖得知SBA-15具有六角結構;且該結構容易受到pH值上升的影響而減弱;由FTIR圖得知利用研究方法可有效的萃取的稻殼中的矽,因為在萃取後稻殼的圖中沒有出現Si的相關鍵結。SEM圖顯示SBA-15/GO複合材料為蜷曲狀,顆粒大小約為0.75µm;TEM圖顯示SBA-15與SBA-15/GO複合材料的孔洞及通道排列整齊。由BET結果得知SBA-15的平均孔徑為11.2 nm;比表面積為656 m2/g;SBA-15/GO的平均孔徑為10.59 nm;比表面積為499 m2/g。從Raman得知以6.0 g 0.5wt%GO添加製備SBA-15/GO具有最適當的ID/IG比值(0.9948)。吸附實驗中SBA-15較符合Langmuir等溫吸附模式,而SBA-15/GO較符合Freundlich等溫吸附模式。但兩者皆符合擬二階動力學吸附模式,且SBA-15/GO之最大吸附量為481.18 mg/g。最後以125 mL、2 M HCl,25 mL 2 N 矽酸鈉,並添加6.0 g 0.5wt%GO所製備之SBA-15/GO複合材料具有最佳結構性與吸附性能。
In this study, SBA-15 graded with graphene oxide (GO)was synthesized usingextraction of rice husk as the silica source.Methylene blue was used to evaluate adsorption capacity of SBA-15/GO. The physical and chemical characteristics of SBA-15 and SBA-15/GO were examined by XRD, FTIR, TEM, SEM, BET and Raman. The adsorption test was proceeded by changing different experimental parameters.The XRD results showedthat SBA-15 had a hexagonal structure and is susceptible to the effect of pH rise. The FTIR spectra confirmed thatthe silica could be extracted effectively from the rice husk, andthere is no corresponding bond in Si. SEM images showed that the SBA-15/GO composites were curled and the particle size was approximately 0.75μm. The TEM images showed that the holes and channels of SBA-15 and SBA-15/GO composites were neat. The pore diameterand surface areaof SBA-15 were 11.2 nm and 656 m2/g. The pore diameterand surface area of SBA-15/GO were 10.59 nm and 499 m2/g. It is known from Raman spectra that SBA-15/GO synthesized using 6.0 g and 0.5 wt% GO revealed the optimum ID/IGratio (0.9948). The resultsof isothermal adsorption experiment indicated that SBA-15 was in accordance with Langmuir model.However, SBA-15/GO was in accordance with Freundlich model. However,the two samples meet the quasi-second order kinetic adsorption pattern.The maximum adsorption capacity of SBA-15/GO is 481.18 mg/g. Finally, the SBA-15/GO composites prepared using 125 mL, 2 M HCl, 25 mL 2 N sodium silicate and 6.0 g, 0.5 wt% GO,showed the optimum pore structure and adsorption abilities.
目錄
指導教授推薦書 i
口試委員審定書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1研究動機 1
1.2研究項目 2
1.2.1 XRD分析 2
1.2.2 FTIR分析 2
1.2.3 SEM分析 2
1.2.4 TEM分析 2
1.2.5 BET分析 2
1.2.6 Raman分析 2
1.2.7 SBA-15及SBA-15/GO吸附實驗 2
1.2.7 SBA-15及SBA-15/GO的吸附行為探討 2
第二章 文獻回顧 3
2.1多孔材料 3
2.1.1 中孔洞氧化矽 SBA-n 介紹 3
2.2 界面活性劑 5
2.2.1 界面活性劑的種類 6
2.2.2 微胞 7
2.4 石墨烯與氧化石墨烯 9
2.4.1 氧化石墨烯之製備介紹 10
2.4.2 氧化石墨烯之應用前景 11
2.5 稻殼與稻殼灰 12
2.6 亞甲基藍 15
2.6吸附理論 16
2.6.1物理吸附 16
2.6.2化學吸附 16
2.7等溫吸附理論 17
2.8動力學吸附理論 20
第三章 實驗方法與設備 22
3.1實驗藥品 22
3.2實驗設備與分析儀器 23
3.3製備矽酸鈉溶液 24
3.4製備SBA-15及SBA-15/GO 26
3.4.1 SBA-15之製備 26
3.4.2 SBA-15/GO之製備 28
3.5中孔洞氧化矽材料性質分析方法 30
3.5.1 X光繞射儀(XRD) 30
3.5.2電子顯微鏡(SEM) 31
3.5.3 穿透式電子顯微鏡(TEM) 31
3.5.4 比表面積分析儀 32
3.5.5拉曼光譜儀(Raman) 34
3.6 SBA-15與SBA-15/GO對甲基藍之吸附實驗 35
3.6.1 等溫吸附實驗 35
3.6.2 不同初始濃度之吸附實驗 36
3.6.3 不同GO添加量之樣品吸附實驗 37
3.6.3 SBA-15/GO(6.0 g)不同吸附劑量之吸附實驗 38
第四章 結果與討論 39
4.1中孔洞二氧化矽SBA-15性質分析 39
4.1.1 XRD分析 39
4.1.2 FTIR分析 41
4.1.3 TEM分析 43
4.1.4 SEM分析 47
4.1.5 BET分析 51
4.1.6 Raman分析 53
4.2 SBA-15與SBA-15/GO對亞甲基藍之吸附實驗 55
第五章 結論 68
參考文獻 70



圖目錄
圖2. 1 SBA-15合成機制示意圖[4] 4
圖2. 2 界面活性劑單體示意圖 5
圖2. 3 微胞示意圖 7
圖2. 4 微胞結構(A)球狀(B)雙層(C)柱狀(D)層狀 8
圖2. 5 六角蜂巢狀晶格示意圖 9
圖2. 6 合成石墨烯氧化物之流程 :(1) 將石墨塊氧化、(2) 將氧化石墨溶於水中並震盪、石墨烯將開始層層剝離而分散於水溶液中、(3) 以聯胺還原石墨烯氧化物[21]。 10
圖2. 7 (a)乾燥稻殼圖 (b)SEM下的稻殼[25] 12
圖2. 8 稻殼灰的應用 [26] 14
圖2. 9 甲基藍結構圖 15
圖2. 10 甲基藍UV vis圖 15
圖3. 1 矽酸鈉溶液之製備流程圖 25
圖3. 2 SBA-15之製備流程圖 27
圖3. 3 SBA-15/GO製備流程 29
圖3. 4 Bragg 's X光繞射示意圖 30
圖3. 5 等溫吸附實驗之流程圖 35
圖3. 6 不同初始濃度之吸附實驗流程圖 36
圖3. 7 不同GO添加量之樣品吸附實驗流程圖 37
圖3. 8 SBA-15/GO(6.0 g)不同吸附劑量之樣品吸附實驗流程圖 38
圖4. 1 以不同pH值製備之SBA-15的XRD分析 39
圖4. 2 不同GO添加量之SBA-15/GO 的XRD分析 40
圖4. 3 RHs與RHA的FTIR圖譜 41
圖4. 4 SBA-15與SBA-15/GO的FTIR圖譜 42
圖4. 5 SBA-15(pH=2) TEM x20k(A) x60k(B) 43
圖4.6 SBA-15(pH=2) TEM x30k(C) x50k(D) 44
圖4. 7 SBA-15/GO(6.0 g) TEM x50k(A) x100k(B) 45
圖4. 8 SBA-15/GO(6.0 g) TEM x15k(C) x50k(D) 46
圖4. 9 SBA-15(pH=2) SEM x5k(A) x10k(B) 47
圖4. 10 SBA-15/GO(1.5 g) SEM x5k(A) x10k(B) 48
圖4. 11 SBA-15/GO(3.0 g) SEM x5k(A) x10k(B) 49
圖4. 12 SBA-15/GO (6.0 g) SEM x5k(A) x10k(B) 50
圖4. 13 SBA-15(pH=2)與SBA-15/GO(6.0 g)之氮氣吸脫附曲線 52
圖4. 14 SBA-15(pH=2)與SBA-15/GO(6.0 g)孔徑分布圖 52
圖4. 15 不同GO添加量之SBA-15/GO Raman圖譜 54
圖4. 16 亞甲基藍之UV-vis光譜圖 55
圖4. 17 亞甲基藍之檢量線 55
圖4. 18 不同pH值製備之SBA-15吸附曲線圖 56
圖4. 19 以不同GO添加量製備SBA-15/GO之吸附曲線圖 57
圖4. 20 SBA-15/GO(6.0 g)不同起始濃度之吸附曲線 58
圖4. 21 SBA-15/GO(6.0 g)不同吸附劑量之吸附曲線圖 59
圖4. 22 SBA-15 Langmuir等溫吸附曲線 60
圖4. 23 SBA-15 Freundlich等溫吸附曲線 61
圖4. 24 SBA-15/GO Langmuir等溫吸附曲線 61
圖4. 25 SBA-15/GO Freundlich等溫吸附曲線 62
圖4. 26 SBA-15擬一階動力學分析圖 63
圖4. 27 SBA-15擬二階動力學分析圖 64
圖4. 28 SBA-15/GO擬一階動力學分析圖 64
圖4. 29 SBA-15/GO擬二階動力學分析圖 65
圖4. 30 SBA-15 內部擴散分析圖 66
圖4. 31 SBA-15/GO 內部擴散分析圖 67


表目錄
表2. 1 多孔材料分類 3
表2. 2 物理吸附與化學系副特性比較 17
表4. 1 SBA-15、SBA-15/GO與SBA-15(by TEOS)[43]之RET數據比較表 51
表4. 2 SBA-15/GO複合材料Raman特徵峰 53
表4. 3 SBA-15與SBA-15/GO的Langmuir等溫吸附相關數據 62
表4. 4 SBA-15與SBA-15/GO的Freundlich等溫吸附相關數據 62
表4. 5 SBA-15與SBA-15/GO擬一階動力學分析相關數據 65
表4. 6 SBA-15與SBA-15/GO擬二階動力學分析相關數據 65
表4. 7 內部擴散分析相關數據 67


[1] R.A.Bakar, R.Yahya and S.N.Gan, “Production do high purity amorphous silica from rice husk”, Procedia Chemistry, 2016, 19 , 189-195
[2] 劉培生, “多孔材料引論”, 2004,清華大學出版社
[3] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”, SCIENCE, 1998,279, 548-552
[4] D. Zhao, P. Yang, Q.H., B. F Chmelka, G. D Stucky, “Topological construction of mesoporous materials Current Opinion in Solid State and Materials”, Science , 1998, 3 ,111-121
[5] P. F. Fulvio, S. Pikus, M. Jaroniec, “Short-time synthesis of SBA-15 using various silica sources”, Journal of Colloid and Interface, Science, 2005, 287 , 717-720
[6] 張簡君毅, “多功能之高分子組成應用於中孔洞氧化矽與中孔洞碳材的合成研究 ”,2005 ,國立成功大學
[7] M. Karthik, L. Y. Lin, H. Bai, “Bifunctional mesoporous Cu–Al–MCM-41 materials for the simultaneous catalytic abatement of NOx and VOCs”, Microporous and Mesoporous Materials ,2009 ,117, 153–160
[8] Y. K. Hwang, J. S. Chang, Y. U. Kwon, S. E. Park, “Microwave synthesis of cubic mesoporous silica SBA-16”, Microporous and Mesoporous Material ,2004 , 68, 21-27
[9] M.C.Chao, H.P.Lin, D.S.Wang, C.Y.Tang, “Controlling the crystal morphology of mesoporous silica SBA-1”, Microporous and Mesoporous Materials, 2005, 83, 269–276
[10] H. M.A. Hunter, P. A. Wright, “Synthesis and characterisation of the mesoprous silicate SBA-2 and its performance as an acid catalyst”, Microporous and Mesoporous Materials, 2001, 43, 361-373
[11] O. A. Anunziata, A. R. Beltramone, M. L. Martínez, L. L. Belon, “Synthesis and characterization of the SBA-3, SBA-5 and SBA-1 nanostructured catalytic materials”, Journal of Colloid and Interface Science, 2007, 315, 184-190
[12] 王鳳英, “界面活性劑的原理與應用”, 高立圖書有限公司, 1998, p24-34
[13] R. M. Hill, “Siloxane surfactants”, Specialist Surfactants, 1997, 143-168
[14] J. Powney and D. O. Jordan. “The Hydrolysis of Soaps as Determined From Glass Electrode pH Measurements”. Trans. Faraday Soc. , 1938, 34, 363-371
[15] McBain JW, Laurent P, John LM. “The hydrolysis of soap solutions. III. Values of pH and the absence of fatty acid as free liquid or solid”, Journal of the American Oil Chemists' Society. , 1948, 25, 77-84
[16] 李潔如,牟中原, “微胞、微乳液的行程”,屠龍文化事業股份有限公司,1994
[17] 蘇清源, “石墨烯量產技術與產業應用”, 光連雙月刊, 2013, 108, 61-71
[18] B. C. Brodie , “On the Atomic Weight of Graphite”, Philos. Trans. R. Soc. London, 1859, 149,249-259
[19] William S. Hummers Jr., Richard E. Offeman, “Preparation of Graphitic Oxide”, J. Am. Chem. Soc. , 1958, 80, 6, pp 1339–1339
[20] Y. Xu et al., “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets”, J. Am. Chem. Soc., 2008, 130 (18), pp 5856–5857
[21] D. Li et al., “Processable aqueous dispersions of graphene nanosheets”, Nature Nanotech. , 2008, 3, 101

[22] 何光裕、張艷、錢茂公、陳海群、汪信, “磁性Fe3O4/石墨烯Photo-Fenton催化劑的製備及其催化活性”, 無機化學學報, 2012, 28, 11, 2306-2312
[23] 陳帝鴻, “透過碳化技術創造高產值 廢棄稻殼變黃金”,工業技術與資訊,2009, 215期,9月號
[24] 歐陽東,“能與矽灰媲美的礦物掺合料- 低溫稻殼灰”,中國建材,2003,第十卷第六期, 42-44
[25] X. Wang, Z. Lu, L. Jia, F. Li, “Preparation and properties of low cost porous titanium by using rice husk as hold space”, Progress in Natural Science: Materials International, 2017, 27, 344-349
[26] O. D. Arefieva, L. A. Zemnukhova, A. A. Kovshun, A. V. Kovekhova, “Processing Methods of Alkaline Hydrolysate from Rice Husk”, Rice Science, 2017, 24, 235-240
[29] Wang, W., Martin, J.C., Zhang, N. et al., “Harvesting silica nanoparticles from rice husks”, J Nanopart Res , 2011, 13, 6981-6990
[28] S.K. Antiohos, V.G. Papadakis, S. Tsimas, “Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness”, Cement and Concrete Research, 2014, 20, 61-62
[29] F. Adam, J.N. Appaturi, A. Iqbal, “The utilization of rice husk silica as a catalyst: Review and recent progress”, Catal Today, 2012, 190, 2-14
[30] S. Chandrasekhar, "Review Processing, properties and applications of reactive silica from rice husk an overview", J Mater Sci, 2003, 38 , 3159-3168
[31] K. Shibata, T. Yamaguchi, K. Hokkirigawa, “Tribological behavior of RH ceramics made from rice husk sliding against stainless steel, alumina, silicon carbide, and silicon nitride”, Tribology International, 2014, 73, 187-194
[32] M.M. Mohamed, F.I. Zidan, M. Thabet, “Synthesis of ZSM-5 zeolite from rice husk ash: Characterization and implications for photocatalytic degradation catalysts”, Microporous Mesoporous Mater, 2008, 108, 193-203
[33] V.C. Srivastava, I.D. Mall, I.M. Mishra, “Optimization of parameters for adsorption of metal ions onto rice husk ash using Taguchi's experimental design methodology”, Chem Eng J, 2008, 140 , 136-144
[34] 杜佳瑾,“廢棄蛋殼對水溶液中亞甲基藍染料之吸附特性研究”,國立屏東科技大學研究所, 2011
[35] KE . Noll , “Adsorption technology for air and water pollution contror”, Lewis publishers, 1992
[36] 蔡正國 , “複合奈米碳管吸附水溶重金屬污染物之應用研究” , 國立雲林科技大學環境與安全衛生工程研究所, 2005
[37] M. Y. Chang, R. S. Juang, “Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay”, Journal of Colloid and Interface Science, 2004, 278, 18-25
[38] T. Gotoh, K. Matsushima, K. I. Kikuchi, “Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions”, Chemosphere, 2004, 55, 135-140
[39] Y.S. Ho, G. McKay, “A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents”, Process Safety and Environmental Protection, 1998, 76, 332-340
[40] V.C. Srivastava , ID . Mall I.M. Mishra ,“Characterization of mesoporous rice husk ( rha ) and adsorption kinetics of metal ions from aqueous solution onto rha”, Journal of Hazardous Materials b., 2006, 134 , 257
[41] L.E. Smart and E.A. Moore, “Solid State Chemistry” , 2005, 3rd edition
[42] F.Bérubé, S. Kaliaguine, “Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials”, Microporous and Mesoporous Materials, 2008, 115, 3, 469-479
[43]W. Wu, C. Shi, X. Bian, Y. Bai, “Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15”, Arabian Journal of Chemistry, 2017, 10, S2773-S2777
[44] 洪悟清、蒲念文、劉益銘、彭佑宇、施佳男、葛明德,“使用天然石墨、人造石墨、與介相碳微球製備石墨烯之比較”,技術學刊,第二十九卷,第三期,民103年,193~198
[45] S.K.S. Hossain, L. Mathur, P. Singh, M.R. Majhi, “Preparation of forsterite refractory using highly abundant amorphous rice husk silica for thermal insulation” , In Journal of Asian Ceramic Societies, 2017, 5, 2, 82-87
[46] M. Kokunešoski, J. Gulicovski, B. Matović, M. Logar, S.K. Milonjić, B. Babić, “Synthesis and surface characterization of ordered mesoporous silica SBA-15”, In Materials Chemistry and Physics, 2010, 124, 2–3, 1248-1252
[47] H. Chaudhuri, S. Dash, A. Sarkar, “Synthesis and use of SBA-15 adsorbent for dye-loaded wastewater treatment”, Journal of Environmental Chemical Engineering, 2015, 3, 2866–2874
[48] M. Zhiguang, Z. Fang, D. Na, L. Suwen, L. Pan, “Kinetic and thermodynamic studies on the adsorption of Ni2+ onto chitosan-aluminium oxide composite material”, College of Chemistry and Environmental Science, 2010, 12, 1, 8

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top