(3.229.120.26) 您好!臺灣時間:2021/04/10 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張芳瑋
研究生(外文):Chang, Fang-Wei
論文名稱:住宅交易量冷熱區空間分析
論文名稱(外文):Spatial Analysis of Hot and Cold Spot in Housing Trading Volume
指導教授:張金鶚張金鶚引用關係江穎慧江穎慧引用關係
指導教授(外文):Chang, Chin-OhChiang, Ying-Hui
口試委員:陳建良陳彥仲林士淵
口試委員(外文):Chen, Chien-LiangChen, Yen-JongLin, Shih-Yuan
口試日期:2018-06-01
學位類別:碩士
校院名稱:國立政治大學
系所名稱:地政學系
學門:社會及行為科學學門
學類:公共行政學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:49
中文關鍵詞:熱點分析住宅交易量空間自相關
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
不動產市場景氣向來為住宅市場研究重點,蓋其影響市場參與者之行為決策及政府制定政策的方向。而交易量可表現市場活動力的強弱,因此常捕捉交易量之時間變化以判斷市場的冷熱程度。然一地區的交易量實為一筆筆交易點位之總和,同時亦含空間分布的冷熱差異,交易較熱門的地區代表被較多數的市場參與者所接受,故找尋市場交易冷熱分布的原因,亦能反映市場狀態。而不動產因其不可移動性而有區位效應,故在探討空間分布時,常會討論空間相依性(spatial dependency),Wong , Yiu, and Chau (2013)指出房價的空間相依性係透過資訊傳遞效果造成鄰近地區互相影響,但資訊傳遞效果影響的是市場交易情況的改變,因此不僅價格,交易量亦會受到影響,而有空間相依之現象。
本文以民國102年至104年實價登錄資料計算台北市各里每年交易量,透過Moran’s I檢定證實交易量分布確實具有空間相依性,並依此利用熱點分析(hot spot analyze)尋找近年台北市交易熱區,將各里分為冷、熱、非冷熱三區,其中該分類包含空間相依之意涵,可考量地區間相互影響之效果。再將影響交易冷熱之變數分為供給面、需求面與價格面,使用次序羅吉特結合追蹤資料模型(panel ordered logit model)進行實證,並得到結論為,代表需求因素的家戶數與所得中位數越高的里,其交易越熱絡,對比供給因素中代表成屋供給的仲介家數對交易冷熱程度影響不顯著,代表影響交易冷熱受需求方面的影響較大。加上就價格面變數而言,房屋單價中位數越低的里交易越熱絡,市場上較偏向買方定價,而使得交易量受需求因素影響較明顯。
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究方法與範圍 3
第三節 研究架構與流程 5
第二章 文獻回顧 7
第一節 住宅交易量分析 7
第二節 交易量與空間分析 9
第三節 影響住宅交易量之因素 12
第三章 研究模型與資料處理 16
第一節 研究設計 16
第二節 資料說明與處理 17
第三節 實證模型之建立 30
第四章 實證結果與分析 37
第一節 供需因素對交易量之影響 37
第二節 供需因素對交易冷熱區之影響 39
第五章 結論與建議 42
第一節 結論 42
第二節 後續研究建議 44
參考文獻 45
附錄 49
1. 田文德(1986),臺北都會區住宅系統動態模型之研究,中興大學都市計畫研究所碩論:台中。
2. 朱湘嵐(2002),城市住宅需求系統動力學模型研究,東南科技大學碩士論文:新北市。
3. 李春長(2009),媒體資訊、搜尋成本、品牌形象對消費者委託房屋仲介業意願之研究。商管科技季刊,10(2),365-394。
4. 李瑞陽、陳勝義(2010),台中市搶奪犯罪熱點與犯罪區位之空間分析,地理研究,(53),23-48。
5. 林元興(2013),不動產市場分析方法之演進,土地問題研究季刊,12 (1),23 – 44。
6. 林左裕、程于芳(2014),影響不動產市場之從眾行為與總體經濟因素之研究,應用經濟論叢,95,61-99。
7. 林祖嘉、林素菁(1994),台灣地區住宅需求價格彈性與所得彈性之估計,住宅學報,2,25-48。
8. 林素菁、林祖嘉(2001),台灣地區住宅供給彈性之估計,住宅學報,10(1),17-27。
9. 林婉婷(2014),不動產交易量影響因素分析─以雙北市為例,德明財經科技大學財務金融系理財與稅務管理碩士論文:台北。
10. 花敬群、張金鶚(1997),住宅市場價量波動之研究,住宅學報,5,1-15。
11. 張金鶚、花敬群、彭建文與楊宗憲(2013),房地產市場分析理論與實務,台北:華泰文化。
12. 張金鶚、高國峰、林秋瑾(2001),台北市合理房價—需求面分析,住宅學報,10(1),51-66。
13. 張紹勳(2016),Panel-data 迴歸模型,台北:五南圖書。
14. 陳明吉、曾琬婷(2008),台灣不動產市場從眾行為之檢視,管理與系統,(15)4,591-615。
15. 陳彥仲(1997),住宅選擇之程序性模式,住宅學報,5,37-49。
16. 彭建文(2004),台灣地區空屋狀況變遷與原因分析,住宅學報,13(2),23-46。
17. 曾喜鵬、薛立敏(2004),家戶在都會區內部之遷移與住宅選擇模式-以住宅消費失衡與調整為觀點的解釋,建築與規劃學報,5(1),1-28。
18. 黃芳玫、吳齊殷(2010),台灣國中學生個人特質、家庭背景與學業成績-追蹤調查資料之研究,經濟論文叢刊,38(1),65-97。
19. 黃信超、陳建元(2016),臺南市2011至2015年災害熱點分析,2016臺灣災害管理學會十週年年會,45-1-45-15。
20. 楊智元(2017),以賣方議價能力衡量台灣房市熱度,住宅學報,已接受。
21. 溫在弘(2015),空間分析:方法與應用,臺北:雙葉書廊。
22. 魏文欽、洪麗芬(2011),影響房地產市場交易量之系統動態模擬-以政府階段性政策為例,結構方程式模型分析,4(2),34-69。
23. 羅于婷(2010),住宅新推個案市場價量關係之分析,國立政治大學地政研究所碩士論文:臺北。
24. Andrew, M., Meen, G., (2003). House price appreciation, transactions and structural change in the British housing market: A macroeconomic perspective. Real Estate Economics, 31, 99–116.
25. Anselin, L. (1989). What is Special About Spatial Data? Alternative Perspectives on Spatial Data Analysis (89-4), NY.
26. Anselin, L. &A. Bera (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. Handbook of Applied Economic Statistics, NY.
27. Can, A. (1992). "Specification and Estimation of Hedonic Housing Price Models." Regional Urban Economics, 22(3), 453-474.
28. Can, A., & Megbolugbe, I. (1997). Spatial dependence and housing price index construction. Journal of Real Estate Finance and Economics, 14, 203–222.
29. Clayton, J., Miller., N. & Peng L.,(2010). Price-volume Correlation in the Housing Market: Causality and Co-movements, J Real Estate Finance Economics, 40, 14–40.
30. de Wit, ER., Englund , P., & Francke, MK (2013).Price and Transaction Volume in the Dutch Housing Market. Regional Science and Urban Economics, 43, 220–241.
31. Devaux, N., & Dubé, J. (2016). About the influence of time on spatial dependence: A meta-analysis using real estate hedonic pricing models. Journal of Real Estate Literature, 24(1), 31-66.
32. Dubin, R. A. (1988). Estimation of regression coefficients in the presence of spatially autocorrelated error terms. Review of Economics and Statistics, 70(3), 466–474.
33. Gallin, J. (2006). The long‐run relationship between house prices and income: evidence from local housing markets. Real Estate Economics, 34(3), 417-438.
34. Hsiao, C. (2014). Analysis of panel data. Cambridge university , Cambridge.
35. Kenny, G. (1999). Modelling the demand and supply sides of the housing market: evidence from Ireland1. Economic Modelling, 16(3), 389-409.
36. Lamont, O., & Stein, J. C. (1999). Leverage and house-price dynamics in US cities. Rand Journal of Economics, 30, 498–514.
37. Leamer, E. E. (2015). Housing really is the business cycle: what survives the lessons of 2008–09?. Journal of Money, Credit and Banking, 47(S1), 43-50.
38. Lee, C., C., Wang Y., C., & Zeng, J., H., (2016). Housing price–volume correlations and boom–bust cycles, Empir Econ, 52,1423–1450.
39. Malpezzi, S. (2002). Hedonic pricing models: a selective and applied review. Housing economics and public policy, 67-89.
40. McCarthy, J., & Peach, R.W., (2004). Are home prices the next bubble? Federal Reserve Bank of New York. FRBNY Economic Policy Review, 10, 1–17.
41. Mehmetoglu, M., & Jakobsen, T. G. (2016). Applied Statistics Using Stata: A Guide for the Social Sciences. Sage.
42. Mills, E., S., & Hamilton, B., W (1994). Urban Economics. HarperCollins College, NY.
43. Ngai, L. R., & Tenreyro, S. (2014). Hot and cold seasons in the housing market. American Economic Review, 104(12), 3991-4026.
44. Novy-Marx, R (2009). Hot and Cold Markets, Real Estate Economics. 37(1), 1-22.
45. Quigley, J.M. (1999), “Real estate prices and economic cycles", International Real Estate Review, 1, 1-20.
46. Safer, A., M.,(2002). The Application of Neural Networks to Predict Abnormal Stock Returns Using Insider Trading Data, Applied Stochastic Models in Business and Industry, 18(4), 381-389.
47. Taltavull de La Paz, P., & Gabrielli, L. (2015). Housing supply and price reactions: a comparison approach to Spanish and Italian Markets. Housing Studies, 30(7), 1036-1063.
48. Tsai, I, C., (2014). Ripple effect in house prices and trading volume in the UK housing market: New viewpoint and evidence. Economic Modelling , 40, 68–75.
49. Tsai, I-C., & Peng, C.W., (2010). A Panel Data Analysis for Housing Affordability in Taiwan. Journal of Economics and Finance. 36(2), 335–350.
50. Wang, X., & Varady, D. P. (2005). Using hot-spot analysis to study the clustering of section 8 housing voucher families. Housing Studies, 20(1), 29-48.
51. Wong, S. K., Yiu, C. Y., & Chau, K. W. (2013). Trading volume-induced spatial autocorrelation in real estate prices. The Journal of Real Estate Finance and Economics, 46(4), 596-608.
52. Yava, A. (1994). Economics of brokerage: an overview. Journal of Real Estate Literature, 2(2), 169-195.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔