|
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems, pages 585–591, 2002. [2] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks. In Social Network Data Analytics, pages 115–148. Springer, 2011. [3] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations. In Thirtieth AAAI Conference on Artificial Intelligence, 2016. [4] T. F. Cox and M. A. Cox. Multidimensional scaling. CRC press, 2000. [5] S. Dieleman and B. Schrauwen. End-to-end learning for music audio. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 6964–6968. IEEE, 2014. [6] J. Dong, X. Li, and C. G. Snoek. Word2visualvec: Cross-media retrieval by visual feature prediction. arXiv preprint arXiv:1604.06838, 2016. [7] J. Foote. An overview of audio information retrieval. Multimedia Systems, 7(1):2–10, 1999. [8] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 855–864. ACM, 2016. [9] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image annotation and retrieval using cross-media relevance models. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 119–126. ACM, 2003. [10] M. Kaminskas and F. Ricci. Contextual music information retrieval and recommendation: State of the art and challenges. Computer Science Review, 6(2):89–119, 2012 [11] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016. [12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012. [13] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the Association for Information Science and Technology, 58(7):1019–1031, 2007. [14] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(Nov):2579–2605, 2008. [15] A. Ogino and Y. Yamashita. Emotion-based music information retrieval using lyrics. In IFIP International Conference on Computer Information Systems and Industrial Management, pages 613–622. Springer, 2015. [16] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference onKnowledge Discovery and Data Mining, pages 701–710. ACM, 2014. [17] J. Qi, X. Huang, and Y. Peng. Cross-media retrieval by multimodal representation fusion with deep networks. In International Forum of Digital TV and Wireless Multimedia Communication, pages 218–227. Springer, 2016. [18] F. Raposo, R. Ribeiro, and D. M. de Matos. Using generic summarization to improve music information retrieval tasks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(6):1119–1128, 2016. [19] S. Ruger. Multimedia information retrieval. Synthesis Lectures on Information Concepts, Retrieval, and Services, 1(1):1–171, 2009. [20] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014. [21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015. [22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, pages 1067–1077. ACM, 2015. [23] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000. [24] R. Typke, F. Wiering, and R. C. Veltkamp. A survey of music information retrieval systems. In Proc. 6th International Conference on Music Information Retrieval, pages 153–160. Queen Mary, University of London, 2005. [25] F. Wu, X. Lu, J. Song, S. Yan, Z. M. Zhang, Y. Rui, and Y. Zhuang. Learning of multimodal representations with random walks on the click graph. IEEE Transactions on Image Processing, 25(2):630–642, 2016. [26] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. Personalized entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pages 283–292. ACM, 2014.
|