|
[1] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional time se- ries forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691, 2017. [2] Guglielmo Maria Caporale, Juncal Cuñado, and Luis A Gil-Alana. Modelling long- run trends and cycles in financial time series data. Journal of Time Series Analysis, 34(3):405–421, 2013. [3] Thira Chavarnakul and David Enke. Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications, 34(2):1004–1017, 2008. [4] Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuška. The importance of experience replay database composition in deep reinforcement learning. In Deep Reinforcement Learning Workshop, NIPS, 2015. [5] John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887, 2017. [6] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014. [7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
[8] Ramon Lawrence. Using neural networks to forecast stock market prices. University of Manitoba, 1997. [9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553): 436–444, 2015. [10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein- forcement learning. arXiv preprint arXiv:1509.02971, 2015. [11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International Conference on Machine Learning, pages 1928–1937, 2016. [12] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beat- tie, Stig Petersen, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015. [13] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229, 2013. [14] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998. [15] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas. Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581, 2015. [16] Yudong Zhang and Lenan Wu. Stock market prediction of s&p 500 via combination of improved bco approach and bp neural network. Expert systems with applications, 36(5):8849–8854, 2009.
|